[スポンサーリンク]

化学者のつぶやき

低分子の3次元構造が簡単にわかる!MicroEDによる結晶構造解析

[スポンサーリンク]

低分子化合物の構造決定法において、最も強力な方法といえば、単結晶X線構造解析(SCDです。質の良い単結晶さえ得られれば、X線の回折データから、分子の3次元構造をはっきりと決定することができます。とは言うものの、質の良い単結晶など、そう簡単に作れるものではありません。結晶作製の過程はひたすら試行錯誤の連続で、膨大な時間がかかるのも普通です。SCDがNMRや質量分析のように広く用いられない最大の理由が、この「単結晶作製の難しさ」にあります。

さて、この技術の大きなブレークスルーと言えば、2013年に東京大学・藤田研から発表された結晶スポンジ法です。(ナノグラムの油状試料もなんのその!結晶に封じて分子構造を一発解析!)多孔質結晶にサンプルを封じ、分子を規則正しく整列させるというこの手法は、SCDの唯一・最大の欠点を解決する強力な手法として、大きく注目を浴びました。

今回は、この結晶スポンジ法に続く新たなブレークスルーとして、UCLAのTamir Gonen教授らによって発表された、MicroEDによる低分子結晶構造解析についてご紹介します。

“The CryoEM Method MicroED as a Powerful Tool for Small Molecule Structure Determination” Jones, C. G.; Martynowycz, M. W.; Hattne, J.; Fulton, T. J.; Stoltz, B. M.; Rodriguez, J. A.; Nelson, H. M.; Gonen, T. ACS Cent. Sci. 2018, 4, 1587. (DOI: 10.1021/acscentsci.8b00760)

1. 電子の回折を用いた微小結晶解析:MicroED

MicroEDは、電子顕微鏡を用い、電子の回折(ED; electron diffraction)によって微小な結晶サンプルから構造情報を得る手法です。電子線回折はX線回折と同じ原理で、サンプルに電子線を当て、得られた回折パターンから物質の構造を解析します。電子線は負電荷を帯びた粒子からなり、原子核やその周りの電子とクーロン力によって強く相互作用するため、電荷を持たず価電子のみと相互作用するX線よりも、強いシグナルを得ることができます(図1)。必要な結晶サイズは100 nm〜1 µm程度と小さく、大きな単結晶を用意する必要はありません。

図1. X線回折法と電子回折法の違い。

電子線回折法自体は、固体物理学や化学分野において古くから使われてきた手法なのですが、測定対象が小さいため電子線によるダメージの影響を受けやすく、有機物質の結晶構造解析を行うのは困難でした。3次元の結晶構造を知るには、サンプルを回転させて異なる角度で回折パターンを測定する必要がありますが、ダメージを受けやすい有機物質では、多方向の測定を行ううちにサンプルが壊れ、回折スポットが消えてしまいます。

ところが、2013年にGonen教授らは、電子線の放射量を減らしてサンプルダメージを低減し、高性能の検出器で電子線回折を記録することで、タンパクの結晶構造を高精度で解析できる手法(MicroED)を発表しました。[1] その後、彼らはこの技術に改良を加え、サンプルを連続的に回転させながら回折パターンを動画で記録するなどにより、タンパクの結晶構造を原子レベルの分解能で得ることに成功しました(図2)。[2, 3]

図2. MicroEDにおけるサンプル測定。

2. MicroEDによる低分子化合物の解析

さて、上記のように、MicroED法は元々はタンパクの構造解析のために開発された技術ですが、Gonen教授らは、これを低分子化合物にも応用できないかと考えました。有機化学の分野でも、結晶構造解析は、キラルの絶対配置の決定、結合長の比較,分子間相互作用の解析などにおいて非常に有用です。今回紹介する論文において、彼らは様々な粉末状の化合物を用いてMicroEDを行い、それらの結晶構造をオングストローム以下の分解能で得ることができることを示しました。

MicroEDでは、大きな単結晶は必要無いので、サンプル調整は至って簡単です。微量のサンプルをTEMグリッドに乗せ、電子顕微鏡に導入するだけで測定を行うことができます(図3)。測定にかかる時間はたった3分、試料ステージを毎秒0.6度ほどの速さで回転させ、異なる角度での回折データを記録します。得られたデータは、X線回折データ用のソフトウェアで同じように解析することができます。

図3. CryoEM MicroEDのサンプル調製。

図4に、彼らがMicroEDで構造解析を行った化合物の一部を示しています。試薬会社からの購入品、カラム精製後の化合物など、様々なサンプルの構造解析ができることが示されています。また、X線はプロトンとほぼ相互作用しないの対し、電子線回折ではプロトンの情報も得ることができます。図4の(+)-リマスペルミジンやカルバマゼビンでは、水素原子の位置(黄緑)が電子密度図に示されています。

図4. MicroEDにより構造解析を行った低分子化合物。(論文より一部改変)

さらに、MicroEDは測定対象となる領域が微小なため、不純物による影響も受けません。X線回折やNMRでは、不純物の混じったサンプルを解析するのは難しいですが、MicroEDでは、グリッド上に異なる化合物の結晶が混在していても、絞りを使って特定領域のみの回折を簡単に測定することができます。結晶同士がグリッド上で数マイクロメートル以上離れていれば、測定結果に影響が出ません。

3. 実際に使ってみて

最近、私も実際にMicroEDを使ってみる機会があったので、その様子を少し述べます。まず、ユーザー視点から言うと、サンプル調整の手間がほぼゼロで簡単、という感じでした(もちろん、サンプルの性質に大きく依存しますが)。TEMグリッドに微量のサンプルを乗せ、顕微鏡下で小さな結晶が見えれば十分です。サンプルを乗せすぎると結晶同士が近すぎて単一の結晶からのデータが得られない、という問題はありますが、濃度を調整するのはそれほど大変ではありません。

測定に関しては、TEMをそれなりに使いこなせる人であれば難しくありません。低放射量モードの設定・試料ホルダーの連続回転などが既にマニュアル化されていたため、決められた手順に従えば測定を行うことができました。低温で観察する場合は、氷の結晶とサンプルの見分けが付きにくいという問題がありますが、慣れてくれば氷の結晶の形や回折パターンが見た目で分かるようになります。また、室温に安定なサンプルであれば、クライオでなく常温でも測定が可能なので、氷によるコンタミの問題は回避できます。得られたデータは、imageJなどで画像ファイルに書き出し、普通の結晶構造解析用のソフト(XDSやMosfilmなど)を利用して解析することができます。

次に、装置管理者の視点でMicroEDを導入することについて述べると、一番のハードルは高性能なカメラが必要なことなようです。その他の要件(低放射量モード設定・サンプルの連続回転・動画撮影)に関してはソフトウェア次第で解決できますが、高性能なカメラを導入するには結構お金がかかってしまいます。また、TEM自体も高価な装置であるため、大きな大学や研究施設でないと、気軽にMicroEDをとることは難しそうです。

4. おわりに

今回は、(私の周りで最近流行っている)MicroED法について取り上げました。MicroEDは、煩雑なサンプル調製無しに結晶構造が高精度で解析できるとてもパワフルな手法です。実際、X線回折用の単結晶作製に1年取り組んで上手く行かず、諦めかけていた友人が、一度目のトライで綺麗なMicroEDパターンを得ることができ、感動していました。導入におけるハードルはありますが、ユーザー側としては、低分子・合成高分子・生体高分子など様々なサンプルの構造解析に有用な技術なので、今後応用が進められることが期待されます。

参考文献

  1. Shi, D.; Nannenga, B. L.; Iadanza, M. G.; Gonen, T. “Three-dimensional electron crystallography of protein microcrystals eLife 2013, 2, e01345. (DOI: 10.7554/eLife.01345)
  2. Nannenga, B. L.; Shi, D.; Leslie, A. G. W.; Gonen, T. “High-resolution 
structure determination by continuous-rotation data collection in MicroED” Nat. Methods 2014, 11, 927–930. (DOI: 10.1038/nmeth.3043)
  3. de la Cruz, M. J.; Hattne, J.; Shi, D.; Seidler, P.; Rodriguez, J.; Reyes, F. E.; Sawaya, M. R.; Cascio, D.; Weiss, S. C.; Kim, S. K.; Hinck, C. S.; Hinck, A. P.; Calero, G.; Eisenberg, D.; Gonen, T. “Atomic-resolution structures from fragmented protein crystals with the cryoEM method MicroED” Nat. Methods 2017, 14, 399–402. (DOI: 10.1038/nmeth.4178)

関連リンク

関連書籍

kanako

投稿者の記事一覧

大学院生。化学科、ケミカルバイオロジー専攻。趣味はスポーツで、アルティメットフリスビーにはまり中。

関連記事

  1. 化学者のためのエレクトロニクス講座~有機半導体編
  2. 10手で陥落!(+)-pepluanol Aの全合成
  3. 親子で楽しめる化学映像集 その1
  4. 日本プロセス化学会2018ウインターシンポジウム
  5. 構造式を楽に描くコツ!? テクニック紹介
  6. 三種類の分子が自発的に整列した構造をもつ超分子共重合ポリマーの開…
  7. インタラクティブ物質科学・カデットプログラム第一回国際シンポジウ…
  8. 研究助成金&海外留学補助金募集:公益財団法人アステラス…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 外部の分析機器を活用する方法
  2. 「天然物ケミカルバイオロジー分子標的と活性制御シンポジウム」に参加してきました
  3. 酵素合成と人工合成の両輪で実現するサフラマイシン類の効率的全合成
  4. 史 不斉エポキシ化 Shi Asymmetric Epoxidation
  5. 捏造は研究室の中だけの問題か?
  6. 神秘的な海の魅力的アルカロイド
  7. 「薬草、信じて使うこと」=自分に合ったものを選ぶ
  8. ダニエル・ノセラ Daniel G. Nocera
  9. ゲノム編集CRISPRに新たな進歩!トランスポゾンを用いた遺伝子導入
  10. ウーリンス試薬 Woollins’ Reagent

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2019年6月
 12
3456789
10111213141516
17181920212223
24252627282930

注目情報

注目情報

最新記事

国内最大級の研究者向けDeepTech Company Creation Program「BRAVE FRONTIER」 2022年度の受付開始 (7/15 〆切)

Beyond Next Ventures株式会社(本社:東京都中央区、代表取締役社⻑:伊藤毅、以下「…

イミンアニオン型Smiles転位によるオルトヒドロキシフェニルケチミン合成法の開発

第394回のスポットライトリサーチは、東京農工大学 大学院工学府 応用化学専攻 森研究室の神野 峻輝…

マテリアルズ・インフォマティクスで用いられる統計[超入門]-研究者が0から始めるデータの見方・考え方-

開催日:2022/07/06 申込みはこちら■開催概要近年、少子高齢化、働き手の不足の影…

表面酸化した銅ナノ粒子による低温焼結に成功~銀が主流のプリンテッドエレクトロニクスに、銅という選択肢を提示~

第393回のスポットライトリサーチは、北海道大学 大学院工学院 材料科学専攻 マテリアル設計講座 先…

高分子材料におけるマテリアルズ・インフォマティクスの活用とは?

 申込みはこちら■セミナー概要本動画は、20022年5月18日に開催されたセミナー「高分…

元素のふるさと図鑑

2022年も折り返しに差し掛かりました。2022年は皆さんにとってどんな年になり…

Q&A型ウェビナー カーボンニュートラル実現のためのマイクロ波プロセス 〜ケミカルリサイクル・乾燥・濃縮・焼成・剥離〜

<内容>本ウェビナーでは脱炭素化を実現するための手段として、マイクロ波プロセスをご紹介いたします…

カルボン酸、窒素をトスしてアミノ酸へ

カルボン酸誘導体の不斉アミノ化によりキラルα-アミノ酸の合成法が報告された。カルボン酸をヒドロキシル…

海洋シアノバクテリアから超強力な細胞増殖阻害物質を発見!

第 392回のスポットライトリサーチは、慶應義塾大学大学院 理工学研究科 博士後期課…

ポンコツ博士の海外奮闘録⑧〜博士,鍵反応を仕込む②〜

ポンコツシリーズ一覧国内編:1話・2話・3話国内外伝:1話・2話・留学TiPs海外編:1…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP