[スポンサーリンク]

化学者のつぶやき

低分子の3次元構造が簡単にわかる!MicroEDによる結晶構造解析

[スポンサーリンク]

低分子化合物の構造決定法において、最も強力な方法といえば、単結晶X線構造解析(SCDです。質の良い単結晶さえ得られれば、X線の回折データから、分子の3次元構造をはっきりと決定することができます。とは言うものの、質の良い単結晶など、そう簡単に作れるものではありません。結晶作製の過程はひたすら試行錯誤の連続で、膨大な時間がかかるのも普通です。SCDがNMRや質量分析のように広く用いられない最大の理由が、この「単結晶作製の難しさ」にあります。

さて、この技術の大きなブレークスルーと言えば、2013年に東京大学・藤田研から発表された結晶スポンジ法です。(ナノグラムの油状試料もなんのその!結晶に封じて分子構造を一発解析!)多孔質結晶にサンプルを封じ、分子を規則正しく整列させるというこの手法は、SCDの唯一・最大の欠点を解決する強力な手法として、大きく注目を浴びました。

今回は、この結晶スポンジ法に続く新たなブレークスルーとして、UCLAのTamir Gonen教授らによって発表された、MicroEDによる低分子結晶構造解析についてご紹介します。

“The CryoEM Method MicroED as a Powerful Tool for Small Molecule Structure Determination” Jones, C. G.; Martynowycz, M. W.; Hattne, J.; Fulton, T. J.; Stoltz, B. M.; Rodriguez, J. A.; Nelson, H. M.; Gonen, T. ACS Cent. Sci. 2018, 4, 1587. (DOI: 10.1021/acscentsci.8b00760)

1. 電子の回折を用いた微小結晶解析:MicroED

MicroEDは、電子顕微鏡を用い、電子の回折(ED; electron diffraction)によって微小な結晶サンプルから構造情報を得る手法です。電子線回折はX線回折と同じ原理で、サンプルに電子線を当て、得られた回折パターンから物質の構造を解析します。電子線は負電荷を帯びた粒子からなり、原子核やその周りの電子とクーロン力によって強く相互作用するため、電荷を持たず価電子のみと相互作用するX線よりも、強いシグナルを得ることができます(図1)。必要な結晶サイズは100 nm〜1 µm程度と小さく、大きな単結晶を用意する必要はありません。

図1. X線回折法と電子回折法の違い。

電子線回折法自体は、固体物理学や化学分野において古くから使われてきた手法なのですが、測定対象が小さいため電子線によるダメージの影響を受けやすく、有機物質の結晶構造解析を行うのは困難でした。3次元の結晶構造を知るには、サンプルを回転させて異なる角度で回折パターンを測定する必要がありますが、ダメージを受けやすい有機物質では、多方向の測定を行ううちにサンプルが壊れ、回折スポットが消えてしまいます。

ところが、2013年にGonen教授らは、電子線の放射量を減らしてサンプルダメージを低減し、高性能の検出器で電子線回折を記録することで、タンパクの結晶構造を高精度で解析できる手法(MicroED)を発表しました。[1] その後、彼らはこの技術に改良を加え、サンプルを連続的に回転させながら回折パターンを動画で記録するなどにより、タンパクの結晶構造を原子レベルの分解能で得ることに成功しました(図2)。[2, 3]

図2. MicroEDにおけるサンプル測定。

2. MicroEDによる低分子化合物の解析

さて、上記のように、MicroED法は元々はタンパクの構造解析のために開発された技術ですが、Gonen教授らは、これを低分子化合物にも応用できないかと考えました。有機化学の分野でも、結晶構造解析は、キラルの絶対配置の決定、結合長の比較,分子間相互作用の解析などにおいて非常に有用です。今回紹介する論文において、彼らは様々な粉末状の化合物を用いてMicroEDを行い、それらの結晶構造をオングストローム以下の分解能で得ることができることを示しました。

MicroEDでは、大きな単結晶は必要無いので、サンプル調整は至って簡単です。微量のサンプルをTEMグリッドに乗せ、電子顕微鏡に導入するだけで測定を行うことができます(図3)。測定にかかる時間はたった3分、試料ステージを毎秒0.6度ほどの速さで回転させ、異なる角度での回折データを記録します。得られたデータは、X線回折データ用のソフトウェアで同じように解析することができます。

図3. CryoEM MicroEDのサンプル調製。

図4に、彼らがMicroEDで構造解析を行った化合物の一部を示しています。試薬会社からの購入品、カラム精製後の化合物など、様々なサンプルの構造解析ができることが示されています。また、X線はプロトンとほぼ相互作用しないの対し、電子線回折ではプロトンの情報も得ることができます。図4の(+)-リマスペルミジンやカルバマゼビンでは、水素原子の位置(黄緑)が電子密度図に示されています。

図4. MicroEDにより構造解析を行った低分子化合物。(論文より一部改変)

さらに、MicroEDは測定対象となる領域が微小なため、不純物による影響も受けません。X線回折やNMRでは、不純物の混じったサンプルを解析するのは難しいですが、MicroEDでは、グリッド上に異なる化合物の結晶が混在していても、絞りを使って特定領域のみの回折を簡単に測定することができます。結晶同士がグリッド上で数マイクロメートル以上離れていれば、測定結果に影響が出ません。

3. 実際に使ってみて

最近、私も実際にMicroEDを使ってみる機会があったので、その様子を少し述べます。まず、ユーザー視点から言うと、サンプル調整の手間がほぼゼロで簡単、という感じでした(もちろん、サンプルの性質に大きく依存しますが)。TEMグリッドに微量のサンプルを乗せ、顕微鏡下で小さな結晶が見えれば十分です。サンプルを乗せすぎると結晶同士が近すぎて単一の結晶からのデータが得られない、という問題はありますが、濃度を調整するのはそれほど大変ではありません。

測定に関しては、TEMをそれなりに使いこなせる人であれば難しくありません。低放射量モードの設定・試料ホルダーの連続回転などが既にマニュアル化されていたため、決められた手順に従えば測定を行うことができました。低温で観察する場合は、氷の結晶とサンプルの見分けが付きにくいという問題がありますが、慣れてくれば氷の結晶の形や回折パターンが見た目で分かるようになります。また、室温に安定なサンプルであれば、クライオでなく常温でも測定が可能なので、氷によるコンタミの問題は回避できます。得られたデータは、imageJなどで画像ファイルに書き出し、普通の結晶構造解析用のソフト(XDSやMosfilmなど)を利用して解析することができます。

次に、装置管理者の視点でMicroEDを導入することについて述べると、一番のハードルは高性能なカメラが必要なことなようです。その他の要件(低放射量モード設定・サンプルの連続回転・動画撮影)に関してはソフトウェア次第で解決できますが、高性能なカメラを導入するには結構お金がかかってしまいます。また、TEM自体も高価な装置であるため、大きな大学や研究施設でないと、気軽にMicroEDをとることは難しそうです。

4. おわりに

今回は、(私の周りで最近流行っている)MicroED法について取り上げました。MicroEDは、煩雑なサンプル調製無しに結晶構造が高精度で解析できるとてもパワフルな手法です。実際、X線回折用の単結晶作製に1年取り組んで上手く行かず、諦めかけていた友人が、一度目のトライで綺麗なMicroEDパターンを得ることができ、感動していました。導入におけるハードルはありますが、ユーザー側としては、低分子・合成高分子・生体高分子など様々なサンプルの構造解析に有用な技術なので、今後応用が進められることが期待されます。

参考文献

  1. Shi, D.; Nannenga, B. L.; Iadanza, M. G.; Gonen, T. “Three-dimensional electron crystallography of protein microcrystals eLife 2013, 2, e01345. (DOI: 10.7554/eLife.01345)
  2. Nannenga, B. L.; Shi, D.; Leslie, A. G. W.; Gonen, T. “High-resolution 
structure determination by continuous-rotation data collection in MicroED” Nat. Methods 2014, 11, 927–930. (DOI: 10.1038/nmeth.3043)
  3. de la Cruz, M. J.; Hattne, J.; Shi, D.; Seidler, P.; Rodriguez, J.; Reyes, F. E.; Sawaya, M. R.; Cascio, D.; Weiss, S. C.; Kim, S. K.; Hinck, C. S.; Hinck, A. P.; Calero, G.; Eisenberg, D.; Gonen, T. “Atomic-resolution structures from fragmented protein crystals with the cryoEM method MicroED” Nat. Methods 2017, 14, 399–402. (DOI: 10.1038/nmeth.4178)

関連リンク

関連書籍

The following two tabs change content below.
kanako

kanako

大学院生。化学科、ケミカルバイオロジー専攻。趣味はスポーツで、アルティメットフリスビーにはまり中。

関連記事

  1. あなたの体の中の”毒ガス”
  2. タミフルをどう作る?~インフルエンザ治療薬の合成~
  3. 化学エネルギーを使って自律歩行するゲル
  4. キラルアニオン相関移動-パラジウム触媒系による触媒的不斉1,1-…
  5. タミフルの新規合成法
  6. Reaxys PhD Prize再開!& クラブシンポ…
  7. ~祭りの後に~ アゴラ企画:有機合成化学カードゲーム【遊機王】
  8. タングトリンの触媒的不斉全合成

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 抗生物質の誘導体が神経難病に有効 名大グループ確認
  2. 決め手はケイ素!身体の中を透視する「分子の千里眼」登場
  3. MUKAIYAMA AWARD講演会
  4. プレプリントサーバについて話そう:Emilie Marcusの翻訳
  5. シグマ アルドリッチ構造式カタログの機能がアップグレードしたらしい
  6. 光学活性ジペプチドホスフィン触媒を用いたイミンとアレン酸エステルの高エナンチオ選択的 [3+2] 環化反応
  7. 受賞者は1000人以上!”21世紀のノーベル賞”
  8. スケールアップ検討法・反応・晶析と実験のスピードアップ化【終了】
  9. ストリゴラクトン : strigolactone
  10. 蒲郡市生命の海科学館で化学しようよ

関連商品

注目情報

注目情報

最新記事

葉緑素だけが集積したナノシート

第235回のスポットライトリサーチは、立命館大学 民秋研究室で博士研究員をされていた、庄司 淳(しょ…

第38回「分子組織化の多様な側面を理解する」Neil Champness教授

長らく更新が止まっていましたが、海外化学者インタビュー再開しました。Nature Chemistry…

排ガス原料のSAFでデリバリーフライトを実施

ANAは日本時間の10月30日、排ガスを原料とするSustainable Aviation Fuel…

“つける“と“はがす“の新技術―分子接合と表面制御

お申込み・詳細はこちら日程2020年1月9日(木)・10日(金)定員20名  先着順…

【日産化学】画期的な生物活性を有する新規除草剤の開発  ~ジオキサジン環に苦しみ、笑った日々~

日産化学は、コア技術である「精密有機合成」や「生物評価」を活かして自社独自開発の…

モノクローナル抗体を用いた人工金属酵素によるエナンチオ選択的フリーデル・クラフツ反応

第234回のスポットライトリサーチは、大阪大学大学院理学研究科・安達 琢真さんにお願いしました。…

Chem-Station Twitter

PAGE TOP