[スポンサーリンク]

化学者のつぶやき

炭素をつなげる王道反応:アルドール反応 (2)

[スポンサーリンク]

「有機化学反応の王道」とも呼ばれるアルドール反応。その特徴、マイルストーン的研究、最近の動向について解説していくシリーズ記事である。

第1回は、アルドール反応とは何か、また、古典的条件に付随する諸問題の解決が実用性を高めるために必要不可欠であるという話をした。

第2回は、その課題解決を目指して確立された初期的な信頼性の高い手法、金属エノラートを用いる方法論を概観してみたい。

金属エノラートを用いるアルドール反応

古典的条件は乱暴に言うと、ドナー・アクセプターとなるカルボニル化合物と活性化剤(酸もしくは塩基)を一緒くたに混ぜて行う反応である。この条件では、本来アクセプターとして働くべき化合物がドナーとして働いたり、同じもの同士がくっつくホモカップリングが起きてしまったりなど、いろいろと不都合なことが多く起きてしまう(図1)。欲しいものだけをとってくるには、反応条件に工夫が必要となる。

図1:アルドール反応は制御が難しい

図1:アルドール反応は制御が難しい

この問題をまず解決したのが、強塩基によってドナー化合物の完全な脱プロトン化を行って、金属エノラートを前調製しておき、そこにアクセプター化合物を反応させる手法である(図2)。

aldoltopic_4

図2:金属エノラートを用いるアルドール反応

古典的条件に比べ、以下の3点で改善されている。大変信頼性の高い方法であるため、現在でもよく用いられている。

① 低温で進行する (速度論支配の生成物も得られる)
② 交差反応が優先する
③ 立体選択性の予測が可能

特に③の特徴は、アルドール反応の有用性を飛躍的に高める大きな価値となった。少し詳しく見てみよう。

図2に示すように、この方法ではsyn体/antiといった2種類の立体異性体が考えられる。何とかしてこれを作り分けたいところだ。

研究の結果、エノラートの幾何異性を制御すれば可能、ということが分かった。例えばリチウムエノラートの場合、Z-エノラートからはsyn体、E-エノラートからはanti体が得られる。

これを統一的に理解するためのモデルがある。1957年にZimmermanとTraxlerが提唱した、六員環遷移状態モデルだ。置換基どうしの立体反発が最も小さくなるよう、金属を介した「いす型六員環配座」の遷移状態を考えれば、立体化学が上手く説明でき、予測にも役立つ (図3)。

図3:Zimmerman-Traxler 6員環遷移状態モデル

図3:Zimmerman-Traxler 6員環遷移状態モデル

よく用いられる金属エノラートとその特徴

現代でもよく用いられる金属エノラートと、その特徴を列挙しておこう。

● リチウムエノラート

THF等の非プロトン性溶媒中において、LDAやLHMDSなどのかさ高い塩基を用いて発生させる。かさ高い塩基を用いる理由は、カルボニル基への求核付加を抑えるためである。

リチウムエノラートの幾何異性は、カルボニル化合物の構造・塩基・溶媒等に影響される。

とりわけエステルをLDAで処理する場合は、HMPAの添加が脱プロトン化の選択性を逆転させる。すなわち、通常はE-エノラートが生じるが、HMPAを添加した場合にはZ-エノラートが生じてくる。(図4)

図4:リチウムエノラート生成における選択性

図4:リチウムエノラート生成における選択性

これは以下のように説明されている。つまり、前者のケースでは、六員環遷移状態から脱プロトン化が起きる(図5, Irelandモデル)。一方で、後者のケースでは、HMPAの配位によりリチウムの関与が妨げられる。このため、エステルの配座存在比に依存した、脱プロトン化の選択性が見られる(図6)。

図5:脱プロトン化メカニズム (HMPA非添加)

図5:脱プロトン化メカニズム (HMPA非添加)

図6:脱プロトン化メカニズム (HMPA添加)

図6:脱プロトン化メカニズム (HMPA添加)

LDAでは速度論支配のエノラートが生じる。しかし、他の条件を用いれば熱力学支配のエノラートも生成させることができる。すなわち、高温・可逆な平衡条件下に、リチウム塩基で処理すれば、熱力学的に最も安定なエノラートが生じてくる(図7)。

図7:エノラート生成における速度論支配と熱力学支配

図7:エノラート生成における速度論支配と熱力学支配

エノラートの幾何異性制御を適切に行うことが出来れば、図3の六員環遷移状態モデルによって、立体の予測が可能である。

リチウムのように会合しやすい金属の場合は、非解離機構の介在も考慮する必要がある(図8)。

THF中にカルボニル化合物をLDAで処理すると、数段階の化学反応を経て4量体を形成する(この結晶構造は確認されている)。解離機構はエノラートモノマーからの反応を想定する一方で、非解離機構では4量体のままアルドール反応が進行すると考える。おそらく両者の機構が混在しているのだろうが、その比率は溶媒、添加剤、基質の構造、塩基のかさ高さに大きく依存すると考えられる。

図8:非解離機構

図8:非解離機構

● ホウ素エノラート

ルイス酸性をもつホウ素化合物と、嵩高いアミン塩基を用いて発生させることが一般的である。試薬を選ぶことでE/Zエノラートの作りわけも可能となる(図9)。

図9:ホウ素エノラートの立体制御

図9:ホウ素エノラートの立体制御

ホウ素エノラートを用いた場合には、一般にリチウムエノラートより高い立体選択性が発現する。B-O結合がLi-O結合よりも強く短いため、6員環遷移状態の相対的安定性の差が高まるためである。図10に具体例を示す。

図10:リチウムエノラートとホウ素エノラートの違い

図10:リチウムエノラートとホウ素エノラートの違い

● ケイ素エノラート

金属エノラートを単離することは困難であるが、ケイ素エノラートは格別に安定で単離精製することができる。カルボニル求電子剤をこれと共存させ、TiCl4、SnCl4、TMSOTf等のルイス酸で活性化することで、アルドール付加体を効率的に得ることができる。この方法は当時東京大学の向山光昭教授によって開発されたことから向山アルドール反応 (図11)と呼ばれ、有機合成化学におけるマイルストーン成果の一つとなっている。日本人の名を冠する人名反応としては、かの鈴木カップリングと並ぶ知名度を誇り、この反応を知らない有機合成化学者はまず居ない。

図11:向山アルドール反応

図11:向山アルドール反応

ケイ素のLewis酸性は弱いため環状遷移状態をとりにくく、線形遷移状態で進行すると言われている。リチウム・ボロンエノラートなどに比較して、高い選択性を発現させることは困難な傾向にある。生成物の立体化学は、用いる基質の構造・Lewis酸などによって大きな影響を受ける。(図12)

図12:向山アルドール反応のメカニズム

図12:向山アルドール反応のメカニズム

他にもチタン、スズ、亜鉛など様々な金属エノラートの発生法が知られているが、特に多用されるのは上記3つである。

さて続いての次回は、より近代に開発された、キラル補助基を用いる不斉アルドール反応について触れることにしたい。

(※本稿は以前公開していた記事に現代事情を加筆・修正したうえで、ブログに移行したものです)
(2001.6.4 執筆 by ブレビコミン、2015. 9.22 加筆修正 by cosine)

The following two tabs change content below.
cosine

cosine

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。 関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。 素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. Twitter発!「笑える(?)実験大失敗集」
  2. 感染制御ー薬剤耐性(AMR)ーChemical Times特集よ…
  3. 芳香族カルボン酸をHAT触媒に応用する
  4. 学会会場でiPadを活用する①~手書きの講演ノートを取ろう!~
  5. 有機合成化学協会誌2017年11月号:オープンアクセス・英文号!…
  6. ChemDrawの使い方【作図編②:触媒サイクル】
  7. タミフルの新規合成法・その4
  8. 図に最適なフォントは何か?

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 不斉Corey-Chaykovskyエポキシド合成を鍵としたキニーネ・キニジンの選択的合成
  2. ソウル大教授Nature Materials論文捏造か?
  3. スピノシン Spinosyn
  4. ビッグデータが一変させる化学研究の未来像
  5. 博士課程学生の奨学金情報
  6. 分析技術ーChemical Times特集より
  7. ノーベル博物館
  8. ドライアイスに御用心
  9. NaHの水素原子の酸化数は?
  10. ボンビコール /bombykol

関連商品

注目情報

注目情報

最新記事

勤務地にこだわり理想も叶える!転職に成功したエンジニアの話

総合職であれば、本社以外の勤務や転勤を職務の一貫として、身近なものとして考えられる方は多いのではない…

決算短信~日本触媒と三洋化成の合併に関連して~

投資家でなければ関係ないと思われがちな決算短信ですが、実は企業のいろいろな情報が正直に書いてある書類…

複雑にインターロックした自己集合体の形成機構の解明

第199回のスポットライトリサーチは、東京大学総合文化研究科(平岡研究室)博士課程・立石友紀さんにお…

小型質量分析装置expression® CMSを試してみた

学生が増えすぎて(うれしい悲鳴ですが)、機器を購入する余裕などこれっぽっちもない代表です。さ…

有機合成化学協会誌2019年6月号:不斉ヘテロDiels-Alder反応・合金ナノ粒子触媒・グラフェンナノリボン・触媒的光延反応・フェイズ・バニシング

有機合成化学協会が発行する有機合成化学協会誌、2019年6月号がオンライン公開されました。梅…

東大キャリア教室で1年生に伝えている大切なこと: 変化を生きる13の流儀

概要不確実な時代を生き抜くキャリアを創るには? 各界で活躍する東大OB・OGが、学生生活や就…

Chem-Station Twitter

PAGE TOP