[スポンサーリンク]

化学者のつぶやき

生合成を模倣した有機合成

[スポンサーリンク]

天然には複雑でかつ興味深い生物活性を有する化合物が多数存在する。しかし、天然から採取できるサンプルは微量であることが多く、また環境の変化により生産されなくなってしまう場合もある。そこで化学反応を用いて合成し、供給することで、生物学的観点での発展に貢献していける。こういった研究分野が天然物の全合成である。全合成は登山にたとえられるほど困難な場合も少なくない。

さて、生物が天然物を合成するルート、すなわち生合成経路を1つの指針として全合成を進めることは、極めて合理的とされている。より反応の進みやすい方向に沿った合成経路となりやすく、また立体制御を有利に進められることが多いためである。また、生合成仮説の検証という面でも有意義である。

こういった事情から近年、生合成仮説に基づき、それを模倣した天然物の全合成研究が多数展開されている。 今回はそのような例をいくつかとりあげてみよう。

 

Plagiospirolide

Plagiochila moritzianaというコケより単離されたplagiospirolide A (1) は、2をジエノフィル、3aをジエンとするDiels-Alder反応によって生合成されるという仮説が提唱されていた。

そこで、加藤ら[1]は3aへと容易に熱異性化が起こる前駆体3b2を合成し、これらをフラスコ内で反応させることを試みた。するとなんとベンゼン中25℃という温和な条件で反応が進行し、plagiospirolide A (1)が得られることが分かった。この付加反応には8種類の異性体が生成する可能性があるが、興味深いことにそのうちただ一種類、すなわち1のみが選択的に精製することも確認されている。

biomimetic_synthesis_1

longithorone A

1994年、パラオ諸島の近海のホヤから単離・構造決定されたlongithorone A (4)は、6個の不斉炭素とアトロプ異性を持つキノン構造を有している、合成化学的に興味深い化合物である。

Diels-Alder反応が2回含まれる生合成仮説が提示されているが、Shairらは2002年、この仮説に基づく合成をやってのけた[2]。すなわち、フラグメント5a5bを別途合成し、これらを分子間Diels-Alder反応に伏すことで立体選択性は低い者の、6を合成できた。TBS保護基がアトロプ異性の制御に効いている。このTBS保護基を除去し、キノンに酸化したところ、今度は分子内Diels-Alder反応が室温下に進行し、単一のジアステレオマーとしてlongithorone A (4)を与えることが分かった。

 

biomimetic_synthesis_2

 (-)-Cylindrocyclophanes

1992年に構造が報告されたCylindrocyclophanes(8)は[7,7]-paracyclophane骨格を有しており、rasorcinolを含むユニットが二量化するという生合成仮説が提唱されている。

Smithらはこの生合成仮説を念頭に置いた全合成を行った[3]。すなわち、オレフィンクロスメタセシスを用いてモノマー9を二量化させ、後続の変換に伏すことでCylindrocyclophanes(8)の不斉合成 を達成した。

biomimetic_synthesis_3

FR-182877

1998年、放線菌から単離されたFR-182877(11)はタキソールと同様にチューブリン脱重合阻害作用を示す。構造を見れば分かるように、多くの不斉点及び複雑に入り組んだ縮環化合物であり、合成には困難が予想される。

Sorensen、Evansらはほぼ同時期に同様な合成ルートを提案し、この全合成を達成した[4]。すなわち、1213のような大環状化合物を合成し、分子内Diels-Alder反応を進行させることにで、FR-182877(11)の全ての炭素骨格と不斉点を一挙に構築した。しかも、得られた付加体は単一のジアステレオマーであった。両合成とも、予想したとおりいとも簡単に反応が進行したように見えるが、相当の苦労を要している。詳しくは、Sorensen、Evansらのfull paper[5]を参照されたい。

biomimetic_synthesis_4

 

epoxyquinol A&B

epoxyquinolA(16a)、B(16b)は理化学研究所の長田らによって単離構造決定された天然物であり、血管新生阻害作用を有している。見てのとおり複雑な構造をしているが、長田らは同様の培養液からモノマー14が単離されたことを受け、16a/16b14の二量化によって生合成されているとの仮説を提唱した[6]。16の全合成は一見困難であるように見えるが、そう考えるとモノマー14を二量化させるような合成経路が浮かんでくるだろう。

実際、16a16bは林、Porco、Mehta[7]のグループよって全合成が達成されている。今回は林らの合成を紹介する。

14の1級水酸基のみを二酸化マンガンによって酸化することで15が生成し、引き続く6π電子環状反応→Diels-Alder反応が進行し、室温下に16aを40%、16bを25%の収率でそれぞれ得ることに成功した。この結果は長田らの生合成仮説をフラスコ内で実証したことに相当する。

 

biomimetic_synthesis_5

panepophenanthrin

ユビキチン活性酵素阻害剤であるpanepophenanthrin(19)は、Baldwin、Porco、Mehtaらによって全合成が達成されている[8]。

ここではPorcoらの合成を紹介したい。17のTBS及びケタールを除去し18を得、そのまま分子内Dilels-Alder反応を経ることで、19の全合成を達成した。

ここでは3級水酸基の存在が重要だと報告されている。。3級水酸基がない基質で分子間Diels-Alder反応を行うと二量体は生成するものの、加熱によって単量体に逆戻りしてしまう。3級水酸基によるヘミアセター形成がポイントであり、これが生成物の熱力学的安定性を高め、Diels-Alder反応を不可逆にしている。言い換えれば、逆反応を起こさせないための”鍵”の役割をしているのである。

biomimetic_synthesis_6

まとめ

以上、天然物の生合成模倣型全合成について数例紹介した。これらの研究成果は天然物を合理的かつ立体選択的に合成できる、有用な戦略を提示してくれている。

お気づきだろうが、これらはDiels-Alder反応を介しているものが多い。Diels-Alder反応を触媒する酵素(Diels-Alderase)の存在が指摘されており、近年その存在が明らかとなっている[9]。こちらも参考文献を参照されたい。

(2004/9/10 執筆 by ブレビコミン,  2015/8/21 加筆修正 by cosine)
(※本記事は以前より公開されていたものを「つぶやき」ブログに加筆修正を経て移行したものです)

関連書籍

参考文献

  1. N. Kato et al. J. Chem. Soc., Perkin Trans, 1, 1047 (1994).
  2. M. E. Layton, C. A. Morales, and M. D. Shair, J. Am. Chem. Soc., 124, 773 (2002).
  3. A. B. Smith, III et al. J. Am. Chem. Soc., 123, 5925 (2001).
  4. (a) E. J. Sorensen et al. J. Am. Chem. Soc., 124, 4552 (2002). (b) D. A. Evans et al. Angew. Chem., Int. Ed., 41, 1787 (2002).
  5. (a) E. J. Sorensen et al. J. Am. Chem. Soc., 125, 5393 (2003). (b) D. A. Evans et al. J. Am. Chem. Soc., 125, 13531 (2003).
  6. H. Osada et al. J. Am. Chem. Soc., 124, 3496 (2002).
  7. (a) Y. Hayashi et al. Angew. Chem., Int. Ed., 41, 3192 (2002).(b) J. A. Porco, Jr. et al. Org. Lett. 4, 3267 (2002). (c) G. Mehta et al. Tetrahedron Lett., 44, 3569 (2003).
  8. (a) J. A. Porco, Jr. et al. Angew. Chem., Int. Ed., 42, 3913 (2002). (b) J. E. Baldwin et al. Org Lett., 5, 2987 (2003). (c) G. Mehta et al. Tetrahedron Lett., 45, 1985 (2004).
  9. 及川英秋, 有合化, 62, 778 (2004).

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. ケムステ新コンテンツ「化学地球儀」
  2. 鍛冶屋はなぜ「鉄を熱いうちに」打つのか?
  3. 核酸医薬の物語1「化学と生物学が交差するとき」
  4. アゾベンゼンは光る!~新たな発光材料として期待~
  5. いろんなカタチの撹拌子を試してみた
  6. 重医薬品(重水素化医薬品、heavy drug)
  7. 研究者×Sigma-Aldrichコラボ試薬 のポータルサイト
  8. 【速報】ノーベル化学賞2014ー超解像顕微鏡の開発

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. グライコシンターゼ (Endo-M-N175Q) : Glycosynthase (Endo-M-N175Q)
  2. コーヒーブレイク
  3. 始めよう!3Dプリンターを使った実験器具DIY:3D CADを使った設計編その2
  4. 水が促進するエポキシド開環カスケード
  5. ケムステV年末ライブ2022を開催します!
  6. イグノーベル賞2022が発表:化学賞は無かったけどユニークな研究が盛りだくさん
  7. 転職でチャンスを掴める人、掴めない人の違い
  8. 紙製TLC!? 話題のクロマトシートを試してみた
  9. 活性酸素・フリーラジカルの科学: 計測技術の新展開と広がる応用
  10. 有機アモルファス蒸着薄膜の自発分極を自在制御することに成功!

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2004年9月
 12345
6789101112
13141516171819
20212223242526
27282930  

注目情報

注目情報

最新記事

【ナード研究所】新卒採用情報(2024年卒)

NARDでの業務は、「研究すること」。入社から、30代・40代・50代…と、…

株式会社ナード研究所ってどんな会社?

株式会社ナード研究所(NARD)は、化学物質の受託合成、受託製造、受託研究を通じ…

マテリアルズ・インフォマティクスを実践するためのベイズ最適化入門 -デモンストレーションで解説-

開催日:2023/04/05 申し込みはこちら■開催概要近年、少子高齢化、働き手の不足の…

ペプチド修飾グラフェン電界効果トランジスタを用いた匂い分子の高感度センシング

第493回のスポットライトリサーチは、東京工業大学 物質理工学院 材料系 早水研究室の本間 千柊(ほ…

日本薬学会  第143年会 付設展示会ケムステキャンペーン Part 2

第一弾に引き続き第二弾。薬学会付設展示会における協賛企業とのケムステコラボキャンペーンです。…

有機合成化学協会誌2023年3月号:Cynaropicri・DPAGT1阻害薬・トリフルオロメチル基・イソキサゾール・触媒的イソシアノ化反応

有機合成化学協会が発行する有機合成化学協会誌、2023年3月号がオンライン公開されました。早…

日本薬学会  第143年会 付設展示会ケムステキャンペーン Part 1

さて、日本化学会春季年会の付設展示会ケムステキャンペーンを3回にわたり紹介しましたが、ほぼ同時期に行…

推進者・企画者のためのマテリアルズ・インフォマティクスの組織推進の進め方 -組織で利活用するための実施例を紹介-

開催日:2023/03/22 申し込みはこちら■開催概要近年、少子高齢化、働き手の不足の…

日本化学会 第103春季年会 付設展示会ケムステキャンペーン Part3

Part 1・Part2に引き続き第三弾。日本化学会年会の付設展示会に出展する企業とのコラボです。…

第2回「Matlantis User Conference」

株式会社Preferred Computational Chemistryは、4月21日(金)に第2…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP