[スポンサーリンク]

一般的な話題

史上最も不運な化学者?

[スポンサーリンク]

化学の黎明期は新元素発見により飛躍的に発展してきました。新元素の発見者は後世に永遠に語り継がれることになりますので、この上ない名誉と言えます。

それでは最も多くの新元素を発見したのは誰でしょう?

希ガス元素を芋ずる式に発見したウイリアム・ラムゼー?アルカリ金属などを続けざまに発見したハンフリー・デービー?放射性元素を発見したマリ・キュリー

いずれも化学の教科書に載っている偉大な化学者達で、数種類の新元素を発見しています。しかし彼らを凌駕する数の元素を発見した(かもしれない)のに、あまり知られていない不遇の化学者がいます。

その名もカール・ヴィルヘルム・シェーレ。なぜ彼の名はそこまで轟いていないのでしょうか。

 

 

scheele_5Scheeleの肖像が入った切手(画像は文献より)

ケムステ読者の皆様でしたらシェーレなんて知らんという方はいないのかもしれませんが、高校生に聞いたらほぼ認知度ゼロではないかと思います。シェーレの名にちなんだ元素もありません。なぜこのようなことになってしまったのか少し考えてみましょう。

その前にシェーレの元素発見に関する業績について振り返ってみたいと思います。

シェーレは少なくとも6つ、すなわちバリウム塩素モリブデン酸素窒素タングステンの発見に関わっています。

 

まずは塩素です。1774年にシェーレは新しい物質として「脱フロギストン海塩酸気(dephlogisticated muriatic acid air)」を発見しました。海塩酸(muriatic acid)とは現在でいうところの塩酸です。当時はびこっていたフロギストン説によって元素の概念は混迷を極めていました。シェーレもその波にもまれ、フロギストンの有無について考慮した命名になっています。

MnO2 + 4HCl → MnCl2 + 2H2O + Cl2

塩酸の酸化で得られたことから、シェーレはここで得られた気体には酸素が含まれていると考えてしまい、(実際にはCl2だったのですが)この酸化物をmuriaticumと名付けました。

rp_davy_medal.gifDavy Medal

それから約40年後の1810年、英国のハンフリー・デービーはこのmuriaticumは酸素を含まない単体であることを「発見」し、塩素と名付けました。こういった経緯から塩素の発見者としてはシェーレとデービーが語られることはありますが、彼が命名したmuriaticumという言葉は、現代ではnatrum muriaticumというレメディーとしてホメオパシーというインチキの中にしか残っていないのです。

しかもこの際用いた古代からの色素であった二酸化マンガンに新しい元素、マンガンが含まれていることにもシェーレは気付いていた節があります。しかし還元することができず新元素発見には至りませんでした。1774年に同郷のJohan Gottlieb Gahnが炭素を用いて不純ではありましたがマンガンを得ることに成功し、マンガンの発見者としてその名を残しました。

Scheele was somewhere on a scale between quite unfortunate and the unluckiest chemist ever to walk the Earth.

Priestly_1Prietley

次は酸素です。1772年シェーレは酸化水銀に種々の硝酸塩を作用させると、「火の空気」が得られる事を発見していました。しかし何故かこの発見を直ぐには発表しませんでした。その間に1774年には英国のジョセフ・プリーストリーが「脱フロギストン空気」として現代で言うところの酸素を発見してしまい、プリーストリーが発見者とされてしまいました。全く別々の発見でしたが、正にpublish or perishとなってしまいました。後日ラボアジェが酸素の発見者としてはシェーレとプリーストリーが別々に貢献したことを言及しましたが、ラボアジェに宛てた手紙でシェーレは自身の実験機器が不足しており、ラボアジェに実験を依頼していたという経緯がありました。

続いて窒素です。窒素は1772年に英国(スコットランド)のダニエル・ラザフォードが発見したとされています。しかしほぼ同時にシェーレ、キャベンディッシュも同様の発見をしています。空気にカリウムの硫化物、チオ硫化物などの混合物を作用させ、酸素を除く事で窒素が得られる事を見出しており、特にキャベンディッシュは窒素の単離法をも記述しています。しかし彼らもラザフォードほど早く発表しませんでした。

 

バリウムモリブデンはどうでしょうか。酸化バリウム中に新元素が含まれている事にシェーレは気付いていました。しかし当時の手法でアルカリ金属、アルカリ土類金属を得る術はなく、34年後デービーが電解を用いてバリウムの単離に成功し発見者の栄誉に輝くのです。

Molybdenite , Rare Metalmolybdenite

シェーレは1778年モリブデンについても輝水鉛鉱、molybdena(現代のmolybdenite, MoS2)という鉱物はgalena(PbS)とは異なっており、新元素が含まれる事を示し、これにmolybdenumという名称を与えました。友人であるPeter Jacob Hjelmが1781年に酸化物を石炭で還元する事でモリブデンの単離に成功しています。

 

最後はタングステンです。1781年にシェーレは灰重石(CaWO4)からタングステン酸(現代の酸化タングステン(IV))を得る事に成功します。ちょっと混乱しますがシェーレは灰重石の名称としてtungsten(重い石の意)を与えました。1783年スペインのエルヤル兄弟がタングステン酸の還元によって単体を得る事に成功し、タングステンの発見者としてクレジットされています。名称はタングステンですが、元素記号はWでありこれはドイツ語のwolframからきていることは以前にも紹介した通りです。

 

ここで全国のシェーレファンの皆様に朗報です!元素名にシェーレは使われていませんが、上述の灰重石の名称として1821年にKarl Caesarが「scheelite」とすることを提案し、現在でもそれが使われています!

sheele_1sheeliteは永遠の輝き(画像は文献より)

元素名ではなく鉱物に名を残すというのも少し微妙ですか?実はもう一つありまして、Scheele’s Greenという緑の色素として一時大流行したものに名が残っています。有機化合物で緑といえば葉緑素ですがご存知の通り直ぐ退色するなど、天然由来の緑色色素は結構珍しいです。このシェーレが合成した通称シェーレグリーンの組成はCuHAsO3であり、お察しの通り非常に毒性が強く、恐らく多くの人を死に至らしめたと考えられます。その中にはシェーレ自身も含まれているのかもしれません。

scheele_2かのナポレオンもScheele’s Greenの犠牲者だという説もあります。

好奇心旺盛だったシェーレのこと、自ら合成した化合物は臭いを嗅いだり、味見したことでしょうから・・・シェーレは1786年、43才の若さでこの世を去ってしまいました。

If he had lived a longer life his genius might be better stamped into chemical history.

歴史にIfは禁物ですが、もしシェーレがもっと長生きしていれば、もっともっと多くの化合物や元素を発見していたに違いありません。燦然と輝く史上最も偉大な化学者として教科書の表紙を飾ったのではないでしょうか。

 

さて、ここまで不運、不遇な化学者も珍しいのではないかと思います。なんかちょっと惜しいというのがあまりにも多いです。一つの不運は、彼が生まれるのが早すぎたことではないかと思います。バリウムの単離のように当時の技術では到底不可能だったものもあります。あと一つ挙げられるのは功を急がなすぎたことでしょうか。やはり科学では得られた結果はきちんと公にしておくことが重要です。蓋を開けてみれば、そんなの気付いてたよとか、それやろうと思ってたんだよねとかいう論文に遭遇することはありませんか?自分ではオリジナルだと思い込んでいても、世界にはきっと同じような事を考えている研究者が3人はいるといつも肝に銘じておきたいものです。

 

このような不運な物語を読めば、皆様がいかに恵まれているかという気持ちになりましたよね?

今回のポストはお馴染みNature Chemistry誌よりBruce C. Gibb教授のthesisを参考にさせていただきました。前回のはこちら

Hard-luck Scheele

Gibb, B. C. Nature Chem. 7, 855–856 (2015). doi: 10.1038/nchem.2379

 

 

関連書籍

[amazonjs asin=”462108917X” locale=”JP” title=”歴史を変えた100の大発見 元素 周期表にまつわる5万年の物語”] [amazonjs asin=”4254102178″ locale=”JP” title=”元素発見の歴史〈1〉”] [amazonjs asin=”4759814388″ locale=”JP” title=”元素検定”]
Avatar photo

ペリプラノン

投稿者の記事一覧

有機合成化学が専門。主に天然物化学、ケミカルバイオロジーについて書いていきたいと思います。

関連記事

  1. コラボリー/Groups(グループ):サイエンスミートアップを支…
  2. 次世代の産学連携拠点「三井リンクラボ柏の葉」を訪問しました!
  3. リングサイズで性質が変わる蛍光性芳香族ナノベルトの合成に成功
  4. 酸化反応を駆使した(-)-deoxoapodineの世界最短合成…
  5. エステルからエーテルをつくる脱一酸化炭素金属触媒
  6. 個性あるTOC その②
  7. 理論的手法を用いた結晶内における三重項エネルギーの流れの観測
  8. 2009年ノーベル化学賞『リボソームの構造と機能の解明』

注目情報

ピックアップ記事

  1. DNAを切らずにゲノム編集-一塩基変換法の開発
  2. ロンドン・サイエンスミュージアム
  3. ホーナー・ワズワース・エモンス反応 Horner-Wadsworth-Emmons (HWE) Reaction
  4. ピクテ・ガムス イソキノリン合成 Pictet-Gams Isoquinoline Synthesis
  5. ケクレの墓 (Poppelsdorf墓地)
  6. 第98回―「極限環境における高分子化学」Graeme George教授
  7. ロジウム(I)触媒を用いるアリールニトリルの炭素‐シアノ基選択的な切断とホウ素化反応
  8. ダイセルが開発した新しいカラム: DCpak PTZ
  9. 2022 CAS Future Leaders プログラム参加者募集
  10. IRの基礎知識

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2015年11月
 1
2345678
9101112131415
16171819202122
23242526272829
30  

注目情報

最新記事

アクリルアミド類のanti-Michael型付加反応の開発ーPd触媒による反応中間体の安定性が鍵―

第622回のスポットライトリサーチは、東京理科大学大学院理学研究科(松田研究室)修士2年の茂呂 諒太…

エントロピーを表す記号はなぜSなのか

Tshozoです。エントロピーの後日談が8年経っても一向に進んでないのは私が熱力学に向いてないことの…

AI解析プラットフォーム Multi-Sigmaとは?

Multi-Sigmaは少ないデータからAIによる予測、要因分析、最適化まで解析可能なプラットフォー…

【11/20~22】第41回メディシナルケミストリーシンポジウム@京都

概要メディシナルケミストリーシンポジウムは、日本の創薬力の向上或いは関連研究分野…

有機電解合成のはなし ~アンモニア常温常圧合成のキー技術~

(出典:燃料アンモニアサプライチェーンの構築 | NEDO グリーンイノベーション基金)Ts…

光触媒でエステルを多電子還元する

第621回のスポットライトリサーチは、分子科学研究所 生命・錯体分子科学研究領域(魚住グループ)にて…

ケムステSlackが開設5周年を迎えました!

日本初の化学専用オープンコミュニティとして発足した「ケムステSlack」が、めで…

人事・DX推進のご担当者の方へ〜研究開発でDXを進めるには

開催日:2024/07/24 申込みはこちら■開催概要新たな技術が生まれ続けるVUCAな…

酵素を照らす新たな光!アミノ酸の酸化的クロスカップリング

酵素と可視光レドックス触媒を協働させる、アミノ酸の酸化的クロスカップリング反応が開発された。多様な非…

二元貴金属酸化物触媒によるC–H活性化: 分子状酸素を酸化剤とするアレーンとカルボン酸の酸化的カップリング

第620回のスポットライトリサーチは、横浜国立大学大学院工学研究院(本倉研究室)の長谷川 慎吾 助教…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP