[スポンサーリンク]

化学者のつぶやき

タミフルをどう作る?~インフルエンザ治療薬の合成~

[スポンサーリンク]

日本では終息に向かっているインフルエンザ。とはいえ鳥インフルエンザは、今なお世界中で感染例が相次いでいます、 変異してできる新型インフルエンザが猛威を振るって人間に蔓延する可能性は捨てきれないものがあります。

昨年度、広く一般にも認知されたインフルエンザ治療薬タミフル。この薬の製造法は効率的なものですが、欠点もいくつかあり、画期的な合成法の開発が求められています。

そんななかごく最近、著名な有機化学者2名の手によってタミフルの新たな不斉合成経路が 同時に報告されました。今回は簡単に紹介したいと思います。

タミフルとは??

その前に、まずタミフルとはなんぞや?というところを簡単にご紹介します。

タミフル(tamiflu:リン酸オセルタミビル)は、スイスロシュ社によって製造されている抗インフルエンザウイルス薬 です。作用機序は、ノイラミニダーゼの阻害です。インフルエンザウイルスは、その表面に増殖に欠かせないタンパク質(赤血球凝集素とノイラミニダーゼ)を有しています。そのうちのノイラミニダーゼを阻害することで、インフルエンザウィルスの増殖が防げるというわけです。インフルエンザは良く「HXNX型」という分類で呼ばれますが、HとNがそれぞれ赤血球凝集素(H)、ノイラミニダーゼ(N)のタイプに対応しています。

タミフルは最近、鳥インフルエンザウィルスが変異して発生する新型インフルエンザに対しても有効であることが報告され、これを契機に各国でタミフルの備蓄がはじまりました。

日本で認可されている他のインフルエンザ薬としては、ノバルティス ファーマのシンメトレル(塩酸アマンタジン)、グラクソ・スミスクライン社のリレンザ(ザナミビル)があります。リレンザはタミフルと同じくノイラミニダーゼ阻害剤ですが、専用の吸入器を使いて摂取しなければなりません。飲み薬であるタミフルは、患者にとっても使いやすい薬なのです。

tamiflusynth_2tamiflusynth_3

タミフルの合成法~ロシュ社の経路~

現在タミフルは植物トウシキミの果実「八角」から得られるシキミ酸(Shikimic acid)を原料として合成、供給されています。

tamiflusynth_4

アジドを使用しない合成法を以下に説明します。

シキミ酸のカルボン酸・ジオールを保護してエチルエステル1とします。1の水酸基をメシル化、ケタールの還元(位置選択性>10:1、分離可能)、生じた水酸基のSN2反応により、エポキシド2を合成します。2にルイス酸存在下アリルアミンを作用させ、位置選択的なエポキシドの開環反応によってアミノアルコール3を得ます。アリル基を除去した後、生じた1級アミンをベンズアルデヒドでイミン形成させることで保護、水酸基のメシル化、さらにもう一度アリルアミンを作用させることで、イミンの除去とアジリジン形成が連続的に進行します。そこにアリルアミンが攻撃することでアジリジンがSN2開環され、5へ導かれます。最後にアリル基を除去してリン酸塩とすることで、タミフルの大量合成に成功しています。

 

ロシュ社の合成法

ロシュ社の合成法

 

この合成経路は11工程と比較的長めのプロセスながらも効率が高く、十分量のタミフルを供給することができます。しかし原料である八角入手経路の独占がもたらす価格高騰や、植物原料の本質として天候や産地情勢に供給量が左右されてしまうなどの問題もあります。(※シキミ酸を大腸菌培養で作らせる方法も検討されています。)

この合成法に対して、今回報告された不斉合成法とは、一体どのようなものなのでしょうか。

 

タミフルの合成法~柴崎・金井らによる経路~

東京大学の柴崎・金井らは、シキミ酸を使わずに、自ら開発した触媒的不斉反応でタミフルを不斉合成しました[1]

1,4シクロヘキサンジエンから誘導できるアジリジン7からアジドを不斉置換させてキラルtransジアミン骨格を得るべく、不斉配位子として6を用いる反応を行っています。[2] これにより、8のアジドを91%eeで得ました。再結晶により光学的純品とし、アミドの保護、ジニトロベンゾイル基の除去、アジドの還元、再びアミンをBoc保護することでジアミン9を合成しました。続いて、Dess-Martin試薬共存下にSeO2を作用させることでケトンへとアリル酸化し、シアニドの付加を経て、エノン10へと誘導しました。 LiAl(OtBu)3Hを用いた立体選択的還元、光延反応でアジリジン環を形成させ、3-ペンタノールの位置選択的付加反応により11を得ました。得られた11のBoc基の除去、選択的なBoc保護、アセチル化、シアノ基の加溶媒分解、最後にリン酸を作用させることで、タミフルの全合成を達成しています。([訂正] X=6)

柴崎・金井らによる合成経路

柴崎・金井らによる合成経路

tamiflusynth_6

 

コーリーらの合成法

これとは別に、ハーバード大のコーリーらも、自身で開発した不斉反応を鍵にタミフルの不斉合成に成功しています[3]。不斉触媒は以下の12のものを用いています。

1,4-ジエンと活性エステルとの触媒的不斉Diels-Alder反応により、シクロヘキセン誘導体13を97%以上のエナンチオ過剰率で合成しました。続いて、アミド化、ヨードラクタム化、アミドのBoc保護により14を得ました。14にDBUを作用させ脱ヨウ素化、アリル位のブロモ化、Cs2CO3処理により、脱ブロモ化とラクタムの加溶媒分解を同時に進行させエチルエステル15へと誘導しました。SnBr4を触媒としたブロモアセトアミド化、続くアジリジン化によりアジリジン16を得ました。このブロモアセトアミド化は一挙にアミノアセチル基と臭素脱離基を導入できる有用な手法だと思います。最後に触媒量のCuOTfを用いて、3-ペンタノールの導入、リン酸塩にすることでタミフルの全合成を達成しました。

コーリーらの合成経路

コーリーらの合成経路

tamiflusynth_8

終わりに

以上、2つの最新型不斉合成経路を概観してきました。これらの合成法が実際に使われるようになるかはわかりません。既存の合成経路が完全に取って代わるとは思えませんが、一部の工程が使われるなどの例はこれまでにも多数あります。

理想はやはり、効率的に何万トンでも大量合成できる手法です。今よりも短段階で保護/脱保護を伴わず、ほとんど定量的に進行する合成法を見出してく必要があるわけです。

みなさんもぜひタミフルの合成法を考えてみてください。

(2005.4.30ブレビ)
(※本記事は以前より公開されていたものに加筆し、「つぶやき」に移行したものです)

参考文献

[1] Fukuta, Y.; Mita, T; Fukuda, N.; Kanai, M.; Shibasaki, M. J. Am. Chem. Soc.2006, 128, 6312. DOI: 10.1021/ja061696k

[2] Mita, T.; Fujimori, I.; Wada, R.; Wen, J.; Kanai, M.; Shibasaki, M. J. Am. Chem. Soc. 2005, 127, 11252. DOI: 10.1021/ja053486y

[3] Yeung, Y-Y.; Hong, S.; Corey,  E. J. J. Am. Chem. Soc. 2006, 128, 6310. DOI: 10.1021/ja0616433

 

関連書籍

 

関連リンク

Oserlamivir Total Synthesis – Wikipedia

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 工程フローからみた「どんな会社が?」~タイヤ編 その1
  2. 10種類のスパチュラを試してみた
  3. スズ化合物除去のニュースタンダード:炭酸カリウム/シリカゲル
  4. 合成手法に焦点を当てて全合成研究を見る「テトロドトキシン~その1…
  5. ウッドワード・ホフマン則を打ち破る『力学的活性化』
  6. データ駆動型R&D組織の実現に向けた、MIを組織的に定着させる3…
  7. 真空ポンプはなぜ壊れる?
  8. 超原子価臭素試薬を用いた脂肪族C-Hアミノ化反応

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. ミッドランド還元 Midland Reduction
  2. Xantphos
  3. 創薬におけるモダリティの意味と具体例
  4. 高速エバポレーションシステムを使ってみた:バイオタージ「V-10 Touch」
  5. 私達の時間スケールでみても、ガラスは固体ではなかった − 7年前に分からなかった問題を解決 −
  6. 第130回―「無機薄膜成長法を指向した有機金属化学」Lisa McElwee-White教授
  7. LG化学より発表されたプラスチックに関する研究成果
  8. 合成化学の”バイブル”を手に入れよう
  9. ゴム状硫黄は何色?
  10. クロスカップリング用Pd触媒 小ネタあれこれ

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2005年4月
 123
45678910
11121314151617
18192021222324
252627282930  

注目情報

注目情報

最新記事

材料開発の未来とロードマップ -「人の付加価値を高めるインフォマティクスとロボティクス」-

 申込みはこちら■セミナー概要本動画は、20022年11月11日に開催された共催セミナーで弊…

第58回「新しい分子が世界を変える力を信じて」山田容子 教授

第58回目の研究者インタビューです! 今回は第36回ケムステVシンポ「光化学最前線2023」の講演者…

始めよう!3Dプリンターを使った実験器具DIY:準備・お手軽プリント編

オリジナルの実験器具を3Dプリンターで作る企画を始めました。第一弾として3Dプリンターの導入と試しに…

第16回日本化学連合シンポジウム「withコロナ時代における化学への期待」

およそ3年間に渡る新型コロナウイルス感染症の蔓延により、経済、文化、研究、社会活動のすべてが大きなダ…

アカデミアケミストがパパ育休を取得しました!

こんにちは、こんばんは、おはようございます、Macyこと九大院薬 助教の寄立麻琴です。タイトルに…

巧みに骨格構築!Daphgracilineの全合成

ユズリハアルカロイドであるdaphgracilineの全合成が初めて達成された。Type II 分子…

【四国化成ホールディングス】新卒採用情報(2024卒)

◆求める人財像:『使命感にあふれ、自ら考え挑戦する人財』私たちが社員に求めるのは、「独創力」…

部分酸化状態を有する純有機中性分子結晶の開発に初めて成功

第464回のスポットライトリサーチは、熊本大学 大学院自然科学教育部 理学専攻 化学コース 上田研究…

マテリアルズ・インフォマティクスにおける高次元ベイズ最適化の活用-パラメーター数が多い条件最適化テーマに対応したmiHub新機能もご紹介-

開催日:2023/2/1  申込みはこちら■開催概要近年、少子高齢化、働き手の不足の影響を受…

化学コミュニケーション賞2022が発表

「化学コミュニケーション賞2022」は、(株)化学工業日報社、(一社)化学情報協会の共催、(国研)科…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP