[スポンサーリンク]

化学者のつぶやき

カスケード反応で難関天然物をまとめて攻略!

[スポンサーリンク]

(冒頭画像はMacMillan研ホームページ上の講演資料より抜粋)

先日プリンストン大学・MacMillanグループからNature誌に報告された論文[1]は、合成化学者なら誰しもが驚嘆する内容でした。

ひとつ合成するだけでも非凡な労力を余儀なくされる天然物合成ですが、なんと一挙に6つもつくり上げてしまったのですから(しかも全て不斉合成!)。その中には難関天然物として名高いストリキニーネも含まれており、総工程数はわずかに12工程

余人をして代えがたい成果を現実のものとしてしまったわけですが、その鍵は彼らが独自に開発した新型カスケード反応にあります。

今回報告された新型カスケード反応は、MacMillan触媒を用いるインドールの不斉付加[2]を起点としたものです。比較容易な例としては、ミンフィエンシンの9工程不斉全合成[3]で用いられた反応が挙げられます。この場合には含硫黄基質が用いられています。 一方で今回の論文では含セレン基質が用いられており、全く異なる骨格で生成物が得られることが判明しています。以下に示すとおり、硫黄とセレンの脱離能の差に起因した結果のようです。

cascade_strychinine_2.gif

 

カスケード反応の生成物は冒頭図の通り、数多の難関天然物合成における合理的中間体となり得ます。詳しいスキームは紹介しきれないので論文を読んでいただきたいのですが、これを鍵中間体として不斉合成未達成の2つを含む、6つの天然物を不斉合成しています。

以下に最難関であろうストリキニーネの合成経路だけ紹介しておきます。既存の触媒的不斉合成経路が最短でも25工程ということですから、畏怖を禁じえない成果そのものといえるでしょう。

 

cascade_strychinine_3.gif

 

関連論文

  1.  Jones, S. B.; Simmons, B.; Mastracchio, A.; MacMillan, D. W. C. Nature 2011, 475, 183. doi:10.1038/nature10232
  2.  (a) Paras, N. A.; MacMillan, D. W. C. J. Am. Chem. Soc. 2001, 123, 4370. doi:10.1021/ja015717g (b) Austin, J. F.; MacMillan, D. W. C. J. Am. Chem. Soc. 2002, 124, 1172. doi:10.1021/ja017255c (c) Austin, J. F.; Kim, S. G.; Sinz, C. J.; Xiao, W. J.; MacMillan, D. W. C. Proc. Nat. Acad. Sci. USA 2004, 101, 5482. doi:10.1073/pnas.0308177101 (d) Knowles, R. R. .; Carpenter, J.; Blakey, S. B.; Kayano, A.;Mangion, I. K.; Sinz, C. J.; MacMillan, D. W. C. Chem. Sci. 2011, 2, 308. DOI:10.1039/c0sc00577k
  3.  Jones, S. B.; Simmons, B.; MacMillan, D. W. C. J. Am. Chem. Soc. 2009, 131, 13606. doi:10.1021/ja906472m
Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. ユニークな名前を持つ配位子
  2. 電気化学的HFIPエーテル形成を経る脱水素クロスカップリング反応…
  3. Excelでできる材料開発のためのデータ解析[超入門]-統計の基…
  4. アルカロイドなど求核性化合物の結晶スポンジ法による解析を可能とす…
  5. 高い分離能のCOF膜が作製可能な二段階構築法の開発
  6. アメリカ企業研究員の生活①:1日の仕事の流れ
  7. あなたの天秤、正確ですか?
  8. 真空ポンプはなぜ壊れる?

注目情報

ピックアップ記事

  1. 「物質と材料のふしぎ」4/17&21はNIMS一般公開
  2. Altmetric Score Top 100をふりかえる ~2018年版~
  3. ロドデノール (rhododenol)
  4. 池田 富樹 Tomiki Ikeda
  5. Stephacidin Bの全合成と触媒的ヒドロアミノアルキル化反応
  6. オスミウム活性炭素 –ニトロ基選択的還元触媒–
  7. 第31回 ナノ材料の階層的組織化で新材料をつくる―Milo Shaffer教授
  8. NMRのプローブと測定(Bruker編)
  9. START your chemi-story あなたの化学を探す 研究職限定 キャリアマッチングLIVE
  10. 味の素、アミノ酸の最大工場がブラジルに完成

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2011年9月
 1234
567891011
12131415161718
19202122232425
2627282930  

注目情報

最新記事

有馬温泉で鉄イオン水溶液について学んできた【化学者が行く温泉巡りの旅】

有馬温泉の金泉は、塩化物濃度と鉄濃度が日本の温泉の中で最も高い温泉で、黄褐色を呈する温泉です。この記…

HPLCをPATツールに変換!オンラインHPLCシステム:DirectInject-LC

これまでの自動サンプリング技術多くの製薬・化学メーカーはその生産性向上のため、有…

MEDCHEM NEWS 34-4 号「新しいモダリティとして注目を浴びる分解創薬」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

圧力に依存して還元反応が進行!~シクロファン構造を活用した新機能~

第686回のスポットライトリサーチは、北海道大学大学院理学研究院化学部門 有機化学第一研究室(鈴木孝…

第58回Vシンポ「天然物フィロソフィ2」を開催します!

第58回ケムステVシンポジウムの開催告知をさせて頂きます!今回のVシンポは、コロナ蔓延の年202…

第76回「目指すは生涯現役!ロマンを追い求めて」櫛田 創 助教

第76回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第75回「デジタル技術は化学研究を革新できるのか?」熊田佳菜子 主任研究員

第75回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第74回「理想的な医薬品原薬の製造法を目指して」細谷 昌弘 サブグループ長

第74回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第57回ケムステVシンポ「祝ノーベル化学賞!金属有機構造体–MOF」を開催します!

第57回ケムステVシンポは、北川 進 先生らの2025年ノーベル化学賞受賞を記念して…

櫛田 創 Soh Kushida

櫛田 創(くしだそう)は日本の化学者である。筑波大学 数理物質系 物質工学域・助教。専門は物理化学、…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP