[スポンサーリンク]

化学者のつぶやき

こんなのアリ!?ギ酸でヒドロカルボキシル化

[スポンサーリンク]

可視光レドックス触媒によるギ酸を炭素源としたヒドロカルボキシル化が開発された。チオール触媒を介したラジカル連鎖機構が支持されており、低触媒量で穏和に反応が進行する。

ヒドロカルボキシル化の進展と多様化

ヒドロカルボキシル化はアルケンを直截、カルボン酸へ誘導する有用な反応である。古典的には遷移金属触媒存在下、高温高圧条件と有毒な一酸化炭素を必要とするが、近年では室温・常圧で進行し、二酸化炭素を炭素源とする反応が開発されている(図 1A)[1]。2020年にYuらはメタルフリーかつ穏和な条件で進行する、可視光駆動型ヒドロカルボキシル化を初めて報告した(図 1B 上)[2]

しかし、化学量論量以上の塩基や添加剤が必要であった。一方で、気体分子の代わりにギ酸を炭素源として利用できるヒドロカルボキシル化も開発されているものの、報告例は少ない。
ごく最近、Juiらはギ酸ナトリウムから生成したCO2ラジカルアニオンを利用した、種々の基質に対する還元反応を開発した[4]。その過程で、彼らは一部の還元されにくいアルケンを基質とすると、CO2ラジカルアニオンが付加しカルボン酸を与えることを見いだした(図 1C)。この報告の直後、本論文著者のWickensらも有機光触媒、チオール、ギ酸塩を用いる類似の触媒系を用いて、ギ酸を炭素源としたアルケンのヒドロカルボキシル化に成功した。本手法は50 mmolスケールでの合成が可能であり、空気下、含水条件でも滞りなく反応が進行する。

図1. (A) 従来のヒドロカルボキシル化 (B) 可視光駆動型のヒドロカルボキシル化 (C) ギ酸塩を用いたヒドロカルボキシル化

 

“Photoinduced Hydrocarboxylation via Thiol-Catalyzed Delivery of Formate Across Activated Alkenes”
Alektiar, S.; Wickens, Z. J. Am. Chem. Soc.2021, 143, 13022–13028.
DOI: 10.1021/jacs.1c07562

論文著者の紹介

研究者:Zachary K. Wickens
研究者の経歴:
2006–2010                  B.A., Macalester College, USA
2010–2015                  Ph.D., California Institute of Technology, USA (Prof. Robert H. Grubbs)
2015–2018                  Postdoc, Harvard University, USA (Prof. Eric N. Jacobsen)
2018–                             Assistant Professor, University of Wisconsin–Madison, USA
研究内容:電気化学、光化学

論文の概要

DMSO中、4-DPAIPN及びT1触媒存在下、アルケン1とギ酸カリウム塩(2)に対して青色光を照射することで対応するカルボン酸3が得られる(図 2A)。基質適用範囲を調査したところ、スチレン(1a)は収率80%で3aを与え、50 mmolスケールでの合成や含水条件にも対応した。本反応はクロロベンゼン(1b)、ピリジニウム(1c)をもつスチレン誘導体のほか、α,β-不飽和エステル(1d)に適用可能であった。電子状態の異なるオレフィンをもつ場合は、電子不足なオレフィンが選択的にヒドロカルボキシル化を受けた(1e)。また、13Cを含むギ酸塩を用いることで同位体標識された生物活性物質(3f, 3g)も合成できた。
次に筆者らは1aを用いて重水素化実験を試みた(図 2B)。重水素化されたギ酸ナトリウム(DCOONa)を用いると、生成した3aの重水素化率は80%であった(Entry 1)。溶媒をDMSO-d6をとすると重水素体を与えない一方、10当量の重水(D2O)を加えると3aの重水素化率は92%となった(Entries 2 and 3)。また、DCOONaを用いてH2Oを添加すると重水素化した3aは得られなかった(Entry 4)。これらの結果から、著者らは(i)、(ii)いずれかを開始反応とする次の反応機構を提唱した(図2C)。開始反応(i)では、青色光により励起された4-DPAIPN2を一電子酸化し、不均化によってCO2ラジカルアニオン2’が生成する。2’1に付加しラジカルアニオン中間体IM1を与える。このIM1T1との水素移動反応(Hydrogen Atom Transfer: HAT)によってカルボキシラートとなり、プロトン化されて3となる。HATによって生成したチイルラジカルT1’2から水素原子を引き抜く過程で、2’は再び生成する。開始反応(ii)では、T14-DPAIPNによる一電子酸化、続く脱プロトン化によってチイルラジカルT1’となる。その後、開始反応(i)と同一の触媒サイクルで反応する。

図2. (A) 基質適用範囲 (B) 重水素化実験 (C) 推定反応機構

 

以上、取り扱い容易なギ酸塩を用いた穏和なヒドロカルボキシル化が開発された。本反応を足掛かりに、CO2ラジカルアニオンを炭素源とする炭素–炭素結合形成の更なる発展が期待される。

参考文献

  1. Kalck, P.; Urrutigoïty, M.; Dechy-Cabaret, O. Hydroxy- and Alkoxycarbonylations of Alkenes and Alkynes. In Catalytic Carbonylation Reactions; Beller, M., Ed.; Topics in Organometallic Chemistry, Vol. 18; Springer: Berlin, Germany, 2006; pp 97–
  2. Huang, H.; Ye, J.-H.; Zhu, L.; Ran, C.-K.; Miao, M.; Wang, W.; Chen, H.; Zhou, W.-J.; Lan, Y.; Yu, B.; Yu, D.-G. Visible-Light-Driven Anti-Markovnikov Hydrocarboxylation of Acrylates and Styrenes with CO2. CCS Chem. 2021, 3, 1746–1756. DOI: 10.31635/ccschem.020.202000374
  3. Wang, Y.; Ren, W.; Li, J.; Wang, H.; Shi, Y. Facile Palladium-Catalyzed Hydrocarboxylation of Olefins without External CO Gas. Org.  Lett. 2014, 16, 5960–5963. DOI: 10.1021/ol502987f
  4. Hendy, C. M.; Smith, G. C.; Xu, Z.; Lian, T.; Jui, N. T. Radical Chain Reduction via Carbon Dioxide Radical Anion (CO2−). J. Am. Chem. Soc. 2021, 143, 8987−8992. DOI: 10.1021/jacs.1c04427

ケムステ内関連記事

Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 女性科学者の卵を支援―「ロレアル・ユネスコ女性科学者 日本奨励賞…
  2. 危険ドラッグ:創薬化学の視点から
  3. マテリアルズ・インフォマティクスの普及に取り組む事業開発ポジショ…
  4. 「世界最小の元素周期表」が登場!?
  5. メールのスマートな送り方
  6. ナノチューブを引き裂け! ~物理的な意味で~
  7. いま企業がアカデミア出身者に期待していること
  8. 留学せずに英語をマスターできるかやってみた(5年目)(留学中編)…

注目情報

ピックアップ記事

  1. イヴ・ショーヴァン Yves Chauvin
  2. 【3/10開催】 高活性酸化触媒の可能性 第1回Wako有機合成セミナー 富士フイルム和光純薬
  3. マテリアルズ・インフォマティクスの推進成功事例 -なぜあの企業は最短でMI推進を成功させたのか?-
  4. 分子間相互作用の協同効果を利用した低対称分子集合体の創出
  5. 2つの触媒と光エネルギーで未踏の化学反応を実現: 芳香族化合物のメタ位選択的アシル化の開発に成功 !!!
  6. 溶媒としてアルコールを検討しました(笑)
  7. カンプス キノリン合成 Camps Quinoline Synthesis
  8. SNSコンテスト企画『集まれ、みんなのラボのDIY!』~結果発表~
  9. L・スターンバック氏死去 精神安定剤開発者
  10. カゴ型シルセスキオキサン「ヤヌスキューブ」の合成と構造決定

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2021年10月
 123
45678910
11121314151617
18192021222324
25262728293031

注目情報

最新記事

粉末 X 線回折の基礎知識【実践·データ解釈編】

粉末 X 線回折 (powder x-ray diffraction; PXRD) は、固体粉末の試…

異方的成長による量子ニードルの合成を実現

第693回のスポットライトリサーチは、東京大学大学院理学系研究科(佃研究室)の髙野慎二郎 助教にお願…

miHub®で叶える、研究開発現場でのデータ活用と人材育成のヒント

参加申し込みする開催概要多くの化学・素材メーカー様でMI導入が進む一…

医薬品容器・包装材市場について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、医…

X 線回折の基礎知識【原理 · 基礎知識編】

X 線回折 (X-ray diffraction) は、原子の配列に関する情報を得るために使われる分…

有機合成化学協会誌2026年1月号:エナミンの極性転換・2-メチル-6-ニトロ安息香酸無水物(MNBA)・細胞内有機化学反応・データ駆動型マルチパラメータスクリーニング・位置選択的重水素化法

有機合成化学協会が発行する有機合成化学協会誌、2026年1月号がオンラインで公開されています。…

偶然と観察と探求の成果:中毒解毒剤から窒素酸化物を窒素分子へ変換する分子へ!

第692回のスポットライトリサーチは、同志社大学大学院理工学研究科(小寺・北岸研究室)博士後期課程3…

嬉野温泉で論文執筆缶詰め旅行をしてみた【化学者が行く温泉巡りの旅】

論文を書かなきゃ!でもせっかくの休暇なのでお出かけしたい! そうだ!人里離れた温泉地で缶詰めして一気…

光の強さで分子集合を巧みに制御!様々な形を持つ非平衡超分子集合体の作り分けを実現

第691回のスポットライトリサーチは、千葉大学大学院 融合理工学府 分子集合体化学研究室(矢貝研究室…

化学系研究職の転職は難しいのか?求人動向と転職を成功させる考え方

化学系研究職の転職の難点は「専門性のニッチさ」と考えられることが多いですが、企業が求めるのは研究プロ…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP