[スポンサーリンク]

化学者のつぶやき

(+)-フォーセチミンの全合成

Total Synthesis of (+)-Fawcettimine.
Linghu, X.; Kennedy-Smith, J. J.; Toste, F. D. Angew. Chem. Int. Ed. 2007, 46, 7671. DOI:10.1002/anie.200702695

カリフォルニア大学バークレイ校のTosteらによる報告です。

フォーセチミンは複雑な縮環構造をもつアルカロイドです。全合成に向けてのポイントは、ヘミアミナール部位を切断してできる5員環・6員環・含窒素9員環の縮環骨格構築、および不斉四級炭素の立体制御です。

Tosteらは、独自に開発した金触媒を用いて、これらの問題を解決しています。金触媒は昨今非常に研究競争が激しく「有機合成のGold Rush」とよばれるまでになっていますが、Tosteはその潮流を創った先導者の一人です。

それでは詳しく見ていきましょう。

今回の合成では「Au(I)触媒によるアルキン・シリルエノールエーテル間の5-endo-dig環化」[1]を鍵反応として用い、合成を達成しています(このストラテジーは、論文[1]中で示されているLycopladinの合成とほぼ同様です)。この例にかぎらず、カチオン性Au(I)触媒は、既存の触媒系では達成し得ない数々の反応を進行させうることが、様々な研究者によって報告されています[2]

 

fawcettimine

まず、プロリン由来の有機触媒を用いた既報の反応条件[3]によって、光学活性シクロヘキセノン誘導体を10gスケールで合成しています。引き続きTBSOTfをルイス酸として用いるアレニルトリブチルスズの共役付加を行い、末端アルキンのヨウ素化を経て、シリルエノールエーテルとアルキン官能基を持つ環化前駆体を短工程で調製しています。

これをAu(I)触媒による環化条件[1]に伏すことにより、四級炭素をもつヒドリンダノン骨格をジアステレオ選択的に構築することに成功しています。その後、鈴木-宮浦クロスカップリングによって必要な炭素原子を導入しています。この段階においてはいくらかの試行錯誤があるようで、四級炭素から伸びている置換基が大きくなると、カップリングはうまくいかず、脱ヨウ素体のみが取れてくるそうです。

引き続き、オレフィンを末端アルコール(ヒドロホウ素化)→ヨウ素(Appel反応)へと変換した後、分子内置換反応を行い含窒素9員環を構築しています。以降3工程を経てフォーセチミンへと導いています。

炭素の導入・立体制御・環形成いずれをとっても、過去のHeathcockらによる合成[4]をかなり踏襲して進めている、という印象を受けました。ルートのオリジナリティ面では今ひとつ、でしょうか。オリジナルな方法論をアピールしたいのであれば、逆合成自体その方法が無いと考えられない、ぐらいのものであって欲しいところ(勿論口で言うだけなら簡単ですけど)。

関連文献

[1] Staben, S. T.; Kennedy-Smith, J. J.; Huang, D.; Corkey, B. K.; LaLonde, R. L.; Toste, F. D. Angew. Chem. Int. Ed. 2006, 45, 5991. DOI:10.1002/anie.200602035

[2] 均一系金触媒に関する総説: (a) Gorin, D. J.; Toste, F. D. Nature 2007, 446, 395. DOI:10.1038/nature05592 (b) Hashmi, A. S. K. Chem. Rev. 2007, 107, 3180. DOI: 10.1021/cr000436x

[3] Carlone, A.; Marigo, M.; North, C.; Landa, A.; Jorgensen, K. A. Chem. Commun. 2006, 4928. DOI: 10.1039/b611366d

[4] (a) Heathcock, C. H. ; Smith, K. M.; Blumenkopf, T. A. J. Am. Chem. Soc. 1986, 108, 5022. (b) Heathcock, C. H. ; Blumenkopf, T. A.; Smith, K. M. J. Org. Chem. 1989, 54, 1548.

関連書籍

関連リンク

The Toste Group (UC Berkeley)

Homogeneous Gold Catalysis (PDF)

The following two tabs change content below.
cosine

cosine

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。 関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。 素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 染色体分裂で活躍するタンパク質“コンデンシン”の正体は分子モータ…
  2. 最近の有機化学論文2
  3. 5配位ケイ素間の結合
  4. NMR が、2016年度グッドデザイン賞を受賞
  5. 剛直な環状ペプチドを与える「オキサゾールグラフト法」
  6. ネオ元素周期表
  7. 神秘的な海の魅力的アルカロイド
  8. 「オープンソース・ラボウェア」が変える科学の未来

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. アミノ酸「ヒスチジン」が脳梗塞に有効――愛媛大が解明
  2. ジャン=マリー・レーン Jean-Marie Lehn
  3. 大環状ヘテロ環の合成から抗がん剤開発へ
  4. 松本・早大教授の論文、学会は「捏造の事実無し」
  5. テトラサイクリン類の全合成
  6. カプサイシンβ-D-グルコピラノシド : Capsaicin beta-D-Glucopyranoside
  7. ACSで無料公開できるかも?論文をオープンにしよう
  8. 光学活性ジペプチドホスフィン触媒を用いたイミンとアレン酸エステルの高エナンチオ選択的 [3+2] 環化反応
  9. 超分子カプセル内包型発光性金属錯体の創製
  10. 2012年ケムステ人気記事ランキング

関連商品

注目情報

注目情報

最新記事

ベンゼンの直接アルキル化

ベンゼンにアルキル基を導入したいとき、皆さんはどのような手法を用いますか? (さらに&hel…

アメリカ大学院留学:TAの仕事

私がこれまでの留学生活で経験した一番の挫折は、ティーチングアシスタント(TA)です。慣れない英語で大…

2017年の注目分子はどれ?

今年も残りあとわずかとなり、毎年おなじみのアメリカ化学会(ACS)によるMolecules of t…

アルデヒドのC-Hクロスカップリングによるケトン合成

プリンストン大学・David W. C. MacMillanらは、可視光レドックス触媒、ニッケル触媒…

“かぼちゃ分子”内で分子内Diels–Alder反応

環状水溶性ホスト分子であるククルビットウリルを用いて生体内酵素Diels–Alderaseの活性を模…

トーマス・レクタ Thomas Lectka

トーマス・レクタ (Thomas Lectka、19xx年xx月x日(デトロイト生)-)は、米国の有…

Chem-Station Twitter

PAGE TOP