[スポンサーリンク]

化学者のつぶやき

(+)-フォーセチミンの全合成

[スポンサーリンク]

Total Synthesis of (+)-Fawcettimine.
Linghu, X.; Kennedy-Smith, J. J.; Toste, F. D. Angew. Chem. Int. Ed. 2007, 46, 7671. DOI:10.1002/anie.200702695

カリフォルニア大学バークレイ校のTosteらによる報告です。

フォーセチミンは複雑な縮環構造をもつアルカロイドです。全合成に向けてのポイントは、ヘミアミナール部位を切断してできる5員環・6員環・含窒素9員環の縮環骨格構築、および不斉四級炭素の立体制御です。

Tosteらは、独自に開発した金触媒を用いて、これらの問題を解決しています。金触媒は昨今非常に研究競争が激しく「有機合成のGold Rush」とよばれるまでになっていますが、Tosteはその潮流を創った先導者の一人です。

それでは詳しく見ていきましょう。

今回の合成では「Au(I)触媒によるアルキン・シリルエノールエーテル間の5-endo-dig環化」[1]を鍵反応として用い、合成を達成しています(このストラテジーは、論文[1]中で示されているLycopladinの合成とほぼ同様です)。この例にかぎらず、カチオン性Au(I)触媒は、既存の触媒系では達成し得ない数々の反応を進行させうることが、様々な研究者によって報告されています[2]

 

fawcettimine

まず、プロリン由来の有機触媒を用いた既報の反応条件[3]によって、光学活性シクロヘキセノン誘導体を10gスケールで合成しています。引き続きTBSOTfをルイス酸として用いるアレニルトリブチルスズの共役付加を行い、末端アルキンのヨウ素化を経て、シリルエノールエーテルとアルキン官能基を持つ環化前駆体を短工程で調製しています。

これをAu(I)触媒による環化条件[1]に伏すことにより、四級炭素をもつヒドリンダノン骨格をジアステレオ選択的に構築することに成功しています。その後、鈴木-宮浦クロスカップリングによって必要な炭素原子を導入しています。この段階においてはいくらかの試行錯誤があるようで、四級炭素から伸びている置換基が大きくなると、カップリングはうまくいかず、脱ヨウ素体のみが取れてくるそうです。

引き続き、オレフィンを末端アルコール(ヒドロホウ素化)→ヨウ素(Appel反応)へと変換した後、分子内置換反応を行い含窒素9員環を構築しています。以降3工程を経てフォーセチミンへと導いています。

炭素の導入・立体制御・環形成いずれをとっても、過去のHeathcockらによる合成[4]をかなり踏襲して進めている、という印象を受けました。ルートのオリジナリティ面では今ひとつ、でしょうか。オリジナルな方法論をアピールしたいのであれば、逆合成自体その方法が無いと考えられない、ぐらいのものであって欲しいところ(勿論口で言うだけなら簡単ですけど)。

関連文献

[1] Staben, S. T.; Kennedy-Smith, J. J.; Huang, D.; Corkey, B. K.; LaLonde, R. L.; Toste, F. D. Angew. Chem. Int. Ed. 2006, 45, 5991. DOI:10.1002/anie.200602035

[2] 均一系金触媒に関する総説: (a) Gorin, D. J.; Toste, F. D. Nature 2007, 446, 395. DOI:10.1038/nature05592 (b) Hashmi, A. S. K. Chem. Rev. 2007, 107, 3180. DOI: 10.1021/cr000436x

[3] Carlone, A.; Marigo, M.; North, C.; Landa, A.; Jorgensen, K. A. Chem. Commun. 2006, 4928. DOI: 10.1039/b611366d

[4] (a) Heathcock, C. H. ; Smith, K. M.; Blumenkopf, T. A. J. Am. Chem. Soc. 1986, 108, 5022. (b) Heathcock, C. H. ; Blumenkopf, T. A.; Smith, K. M. J. Org. Chem. 1989, 54, 1548.

関連書籍

関連リンク

The Toste Group (UC Berkeley)

Homogeneous Gold Catalysis (PDF)

The following two tabs change content below.
cosine

cosine

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。 関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。 素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 夢の筒状分子 カーボンナノチューブ
  2. 複雑な生化学反応の条件検討に最適! マイクロ流体技術を使った新手…
  3. 即戦力のコンパクトFTIR:IRSpirit
  4. ケイ素置換gem-二クロムメタン錯体の反応性と触媒作用
  5. すべてがFになる
  6. キラルアミンを一度に判別!高分子認識能を有するPd錯体
  7. ケムステイブニングミキサー2019ー報告
  8. 化学と工業

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 風力で作る燃料電池
  2. 「化学の日」はイベント盛り沢山
  3. 芳香族化合物のスルホン化 Sulfonylation of Aromatic Compound
  4. カール・ダイセロス Karl Deisseroth
  5. 長井長義の日記など寄贈 明治の薬学者、徳島大へ
  6. フラーレンの中には核反応を早くする不思議空間がある
  7. メタンハイドレート Methane Hydrate
  8. 日本電子の米国法人、有機物を非破壊検出できるイオン源を開発
  9. ビュッヒ・フラッシュクロマト用カートリッジもれなくプレゼント!
  10. バートン・ザード ピロール合成 Barton-Zard Pyrrole Synthesis

関連商品

注目情報

注目情報

最新記事

ヒドロゲルの新たな力学強度・温度応答性制御法

第230回のスポットライトリサーチは、東京農工大学大学院工学府(村岡研究室)・石田敦也さんにお願い致…

光誘導アシルラジカルのミニスキ型ヒドロキシアルキル化反応

可視光照射条件下でのアジン類のミニスキ型ヒドロキシアルキル化反応が開発された。官能基許容性が高いため…

イオン交換が分子間電荷移動を駆動する協奏的現象の発見

第229回のスポットライトリサーチは、東京大学大学院 新領域創成科学研究科(竹谷・岡本研究室)・山下…

化学産業における規格の意義

普段、実験で使う溶媒には、試薬特級や試薬一級といった”グレード”が記載されている。一般的には、特級の…

特許資産規模ランキング2019、トップ3は富士フイルム、三菱ケミカル、住友化学

株式会社パテント・リザルトは、独自に分類した「化学」業界の企業を対象に、各社が保有する特許資産を質と…

TQ: TriQuinoline

第228回のスポットライトリサーチは、足立 慎弥さんにお願い致しました。シンプルながらこれま…

Chem-Station Twitter

PAGE TOP