[スポンサーリンク]

化学者のつぶやき

水が促進するエポキシド開環カスケード

[スポンサーリンク]

Epoxide-Opening Cascades Promoted by Water.
Vilotijevic, I.; Jamison, T. F. Science 2007, 317, 1189. DOI: 10.1126/science.1146421

冒頭図下のジムノシン(Gymnocin)のように、エーテル含有環が沢山連結した化合物は、海産性の天然毒物に多く見られます。このようなポリエーテル縮環構造をもつものとしては他に、シガテラ食中毒の原因化合物であるシガトキシン(Ciguatoxin)、赤潮が発生させる毒成分であるブレベトキシン(Brevetoxin)などが知られています。それらの化合物群は広く海産ポリエーテル天然物と呼ばれています。

 「このように複雑なポリエーテル系天然物を、生物はどのように合成しているのでしょうか?」

今回マサチューセッツ工科大・Timothy Jamisonらによって、この長年にわたる疑問を理解する一助となるかも知れない報告がなされました。

上述の疑問に対する回答として最有望視されているのが、コロンビア大・中西香爾教授によって提唱された『エポキシド開環カスケード生合成仮説』[1]です。 すなわち、冒頭図上のようなポリエポキシドが連続的に分子内置換・開環を繰り返しつつ、ポリエーテル系天然物を与える――という天才的な発想から導かれた、大変美しい仮説です。ただ、実験的証拠に極めて乏しく、あくまで仮説の域を出ませんでした。

フラスコ内でこの反応を行う試みは、実に早い段階で試されているものの、カスケード仮説とは異なる選択性で進行してしまうのです。

すなわち、アルコールによる類似のエポキシド開環は、5-exo-tet環化のほうが6-endo-tet環化よりも優先してしまいます。Baldwin則によればどちらも許容な反応ですが、フラスコ反応の結果からは『カスケード仮説』を支持する事実は得られてこなかったのです。

 

ただ、これは有機溶媒中での話だったのです。

今回Jamisonらは、中性の水を溶媒として開環反応を行うと6員環形成が優先することを見いだしました。すなわち、下スキームのような反応条件に伏すことで、スキーム右のような6員環連結化合物が高収率で得られる、ということを明らかとしたのです。

Jamison_polyether_3

 同じ基質を用いて有機溶媒中でカスケード反応を行った場合、5員環形成が優先してくるか、反応がうまく進行しないかのどちらかです。また、温度は選択性に関係しないことも分かっています。すなわち何らかの形で水溶媒が遷移状態に関与していることが考えられます。機構の詳細については、論文中ではごく推測的にしか触れられていませんが、今後の研究を待つ必要があるでしょう。

 エントロピー的に有利となるよう、あらかじめ六員環を組んだ基質を用いて反応させている、という点には勿論注意しておく必要があるでしょうが、 本報告は生体内(水中)で起こるとされる『カスケード仮説』を支持しうる重要な知見となりうるのではないでしょうか。

【追記 2009.6.24】

On the Synergism Between H2O and a Tetrahydropyran Template in the Regioselective Cyclization of an Epoxy Alcohol
Byers, J. A.;  Jamison, T. F. J. Am. Chem. Soc. 2009, 131, 6383. doi:10.1021/ja9004909

最近、本反応のメカニズム解明論文が発表されました。2つの水分子が水素結合することによって遷移状態を固定化するとの考察です。

 

関連文献

[1] Nakanishi, K. Toxicon 198523, 473.

 

関連リンク

Toxin’s synthesis secret cracked (Chemistry World)

When Organics Fail, Try Water (C&EN)

Jamison group at MIT

シガトキシン – Wikipedia

Ciguatera – Wikipedia

Brevetoxin – Wikipedia

Mitotoxin – Wikipedia

海産物の毒 (有機化学美術館)

The following two tabs change content below.
cosine

cosine

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。 関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。 素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 卒論・修論にむけて〜わかりやすく伝わる文章を書こう!〜
  2. 博士号とは何だったのか - 早稲田ディプロマミル事件?
  3. 「医薬品クライシス」を読みました。
  4. B≡B Triple Bond
  5. ゲルセジン型アルカロイドの網羅的全合成
  6. 「天然物ケミカルバイオロジー分子標的と活性制御シンポジウム」に参…
  7. 落葉の化学~「コロ助の科学質問箱」に捧ぐ
  8. 病理学的知見にもとづく化学物質の有害性評価

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 【追悼企画】カナダのライジングスター逝く
  2. 化学工場災害事例 ~爆発事故に学ぶ~
  3. 求電子的フッ素化剤 Electrophilic Fluorination Reagent
  4. 科学予算はイギリスでも「仕分け対象」
  5. 資生堂企業資料館
  6. 実例で分かるスケールアップの原理と晶析【終了】
  7. 博士課程の夢:また私はなぜ心配するのを止めて進学を選んだか
  8. 三菱化学が有機太陽電池事業に参入
  9. ルーブ・ゴールドバーグ反応 その2
  10. 【速報】2010年ノーベル生理医学賞決定ーケンブリッジ大のエドワード氏

関連商品

注目情報

注目情報

最新記事

海外でのアカデミックポジションの公開インタビュー

アカデミックポジションの選考において、一般的なのか良く分かりませんが、欧米(スイス)でどういった選考…

柔軟な小さな分子から巨大環状錯体を組み上げる ~人工タンパク質への第一歩~

第205回のスポットライトリサーチは、お茶の水女子大学 基幹研究院自然科学系・三宅 亮介 先生 にお…

光触媒を用いるスピロ環合成法が創薬の未来を明るく照らす

可視光光触媒を用いたスピロ環骨格構築法が報告された。創薬分野においてsp3炭素豊富な骨格は、構造、活…

日本初の化学専用オープンコミュニティ、ケムステSlack始動!

もし日常的に、様々な分野の日本中の化学徒・研究者と、最先端の化学について自由闊達に議論を交わし合い、…

HACCP制度化と食品安全マネジメントシステムーChemical Times特集より

関東化学が発行する化学情報誌「ケミカルタイムズ」。年4回発行のこの無料雑誌の紹介をしています。…

農薬メーカの事業動向・戦略について調査結果を発表

 この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=川原喜治)は、農薬…

Chem-Station Twitter

PAGE TOP