[スポンサーリンク]

化学者のつぶやき

あなたの天秤、正確ですか?

実験化学者が最も頻繁に使う分析機器は、NMRでも液クロでもなくて、天秤でしょう。どのラボにも微量用「分析天秤」と大量用「汎用天秤」の2台があると思います。いつも当たり前に試料の重さを量ってますが、あなたの天秤は正確ですか?もし天秤の値が不正確なら、実験の収率も、液クロ定量も怪しいデータになっちゃいます。秤量がズレる要因から

①静電気

②風

③傾き

の対策をしてみました。

静電気対策

静電気とは「帯電してとどまっている電気」のこと。摩擦などによって物質に帯電が起こりますが、空気中の水分を通じて電気は逃げていきます。ところが湿度50%以下の場合、静電気は放電量が帯電量を下回り、電気は逃げれずに溜まっていきます。冬の空気はもともと乾燥している上に、暖房によってさらに乾燥が進むため、冬場は静電気(帯電・火花放電)が起き易くなります。

帯電物からの静電誘導により周囲に逆符号の電荷が発生するので、電荷同士のクーロン力が天秤の誤差となって表れます。静電気は時間と共に空気や計量皿などに逃げていくため、クーロン力は変動します。つまり、帯電した作業員が天びんに近付く事で、天秤に以下のような現象が起きます:
「計量値がふらつく、次第に少しずつ変化する」
「計量値の再現性がない」
「表示は安定しているが、計量値がずれる」

更に、薬包紙・ガラス器具の帯電により、試薬がべったり付着 (吸引力)、逆に飛散(反発力)する事も良く起こります。(合成樹脂系の濾紙を避け、試料や容器をアルミ箔で包むことで改善します。)
施設によっては、加湿による静電対策が成された「秤量部屋」が用意されています。また、風防表面に金属薄膜や帯電防止剤塗布といった天秤での静電気対策がなされているものもあります。

 私のラボにはそんな物が無かったので、小型のイオナイザー(除電機)を購入しました。電源を入れるとコロナ放電によってイオンを生成し、大気中の静電気を中和します。こいつを分析用天秤の風防内に置いた所、天秤のドリフトや試料の付着・飛散がグっと改善しました。寿命は長いので、日中は電源入れっぱなしにしています。安くは無いですがお薦めです。(最新の分析天秤は、イオナイザー内蔵のものもあるようです)

nishi-cmzs3217300001.jpgのサムネイル画像

 

風対策

ラボ内はエアコン・ドラフト・人の出入りで風が起きまくっているので、天板の広い汎用天秤はなかなか安定してくれません。風が当たらない場所に移動すれば良いだけですが、ラボが手狭な場合は天秤を置ける場所は限られてきます。また、「風防」で風が当たらないよう防御すれば良いのですが、(分析用天秤は風防付きが当たり前ですが)風防付きの汎用天秤はあまり見かけませんよね
何か良い物がないかと探していたら、AMD製天秤には小型風防が標準付属品になっていました。
こりゃいいね!ラボの汎用天秤は古くて買い替えようと思ってたので、こいつを購入しました。小型とはいえ天板に風が当たるのを防いでくれるので、汎用天秤もすっかり安定化しましたよ。「小型」で高さが低いので秤量作業の邪魔にならず、使い勝手も良いです。(天秤を買い換えなくても、風防だけ別売品として購入できるようです)

fz-iwp.jpg

傾き対策

どの天秤にも水準計が付いているって知ってました?(悲しいかな、知らないラボメンバーも居ました)。気泡が中央の円内に入っていなければ、天秤の水平は保たれていません。すぐに調整が必要です。天秤周りを掃除した時は、ほぼ間違いなく水平がズレてます。水準計を見ながら、天秤の足の長さを調整して、きっちり水平に保ちましょう。

 

その他の注意点

説明書には以下の注意点が書いてありましたので、ラボの天秤を一度チェックしてみると良いでしょう。

 

1. 天びんに直射日光が当たらない場所に設置すること
2. 部屋の温度変化が小さいこと(エアコンON後/OFF後は室温変化が激しいので注意)
3. エアコンの風が天びんに当たらないこと
4. ドアの開閉で部屋の空気が大きく動かないこと
5. 天びんの水平が正しくとれていること
6. 頑丈な机(できれば除振台)を使用すること
7. 振動の少ない場所であること。
8. 電源を入れて(コンセントに差し込む)から十分時間をおくこと

また、天秤メーカーのサービスに、標準分銅を使った精度チェックをお願いできるかもしれません。私は1年に1回チェックをして、天秤の秤量値が正確である事を確認して頂いてます。

秤量を改善して、快適なラボ生活をおくりましょう。

 

関連商品

関連記事

  1. 超分子カプセル内包型発光性金属錯体の創製
  2. バイオタージ Isolera: フラッシュ自動精製装置がSPEE…
  3. 分子構造を 3D で観察しよう (2)
  4. メソポーラスシリカ(2)
  5. ニセ試薬のサプライチェーン
  6. 抗体結合ペプチドを用いる非共有結合的抗体-薬物複合体の創製
  7. C&EN コラム記事 ~Bench & Cu…
  8. NPG asia materialsが10周年:ハイライト研究収…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. イヴァン・フック Ivan Huc
  2. 可逆的付加-開裂連鎖移動重合 RAFT Polymerization
  3. ピーナッツ型分子の合成に成功!
  4. E-mail Alertを活用しよう!
  5. 金属-有機構造体 / Metal-Organic Frameworks
  6. 薗頭 健吉 Kenkichi Sonogashira
  7. ブルース・ギブ Bruce C. Gibb
  8. n型半導体特性を示すペリレン誘導体
  9. 光だけでなく化学物質も受容できるロドプシンの発見
  10. 第18回 出版業務が天職 – Catherine Goodman

関連商品

注目情報

注目情報

最新記事

有機ホウ素化合物を用いたSNi型立体特異的β-ラムノシル化反応の開発

第166回目のスポットライトリサーチは、慶應義塾大学理工学部博士課程・西 信哉(にし のぶや)さんに…

アルキルアミンをボロン酸エステルに変換する

不活性C(sp3)–N結合をボリル化する初めての反応が開発された。入手容易なアルキルアミンから様々な…

生物の仕組みに倣う:背景と光に応じて色が変わる顔料の開発

第165回目のスポットライトリサーチは、名古屋大学大学院工学研究科 ・坂井美紀(さかい みき)さんに…

イミデートラジカルを用いた多置換アミノアルコール合成

イミデートラジカルを用い、一挙に多置換アミノアルコールを合成する方法が開発された。穏和な条件かつ位置…

ジェフリー·ロング Jeffrey R. Long

ジェフリー·ロング(Jeffrey R. Long, 1969年xx月xx日-)は、アメリカの無機材…

【なんと簡単な!】 カーボンナノリングを用いた多孔性ナノシートのボトムアップ合成

第 164 回目のスポットライトリサーチは東京大学大学院新領域創成科学研究科 物質系専攻の森泰造 (…

PAGE TOP