[スポンサーリンク]

一般的な話題

自己組織化ホスト内包接による水中での最小ヌクレオチド二重鎖の形成

[スポンサーリンク]

 

Minimal nucleotide duplex formation in water through enclathration in self-assembled hosts
Sawada, T.; Yoshizawa, M.; Sato, S.; Fujita, M. Nature Chem. 2009Advance Online Publication doi:10.1038/NCHEM.100

 

ケムステニュースでもお伝えしましたが、化学界最高峰ジャーナルの一つになると衆目を集めている、Nature Chemistryの第1号論文が満を持して公開されました。記念すべき第1号論文を見事射止めたのは、東京大学工学部・藤田誠教授のグループによる研究です。

こちら「つぶやき」では、研究内容の詳細など、少々踏み込んだことについても述べてみたいと思います。

 遺伝情報の担い手であるDNA・RNAなどの構成単位・ヌクレオチド鎖が水中で安定な二重らせんを形成するには、4塩基対以上の長さが必要とされています。しかし水素結合を十分強固なものにしうる疎水的環境においては、それ以下の数でも二重鎖を作ると言われています。例えばリボソームにおける翻訳作業は、3塩基のtRNAアンチコドンがmRNAの相補的部位に結合する過程が、そのキープロセスになっています。わずか3塩基でOKなのは、リボソームが結合部周りに疎水的環境を作り出しているから、と説明されています。

 藤田らは、水中では水素結合ペアを作れない単一ヌクレオチド同士であっても、下記のような人工超分子ケージに内包させればペアを作りうることを示しました。過去に得られた知見から、超分子ケージ内部は疎水的環境にあることが強く示唆されています。つまり、ケージが作り出す疎水的環境が塩基対形成過程において効果的に機能している、と言うことができます。

 こういった人工系がもたらす科学的知見は、生体系の理解へとフィードバック出来ることは勿論、分子情報を扱う新機能系に展開していくための重要な基礎となる――といった感じで論文のストーリーは締めくくられています。いやぁ、流石に上手く書きますね・・・勉強になります。

 ところで話は変わりますが、公式サイトでは、下図のようなNature Chemistry誌の仮想的表紙が閲覧可能です(同様の壁紙もダウンロードできます)。この図がベンゼン環をもつ何かしらの化合物を表していることは推測可能でしょうが、具体的に何なのか、皆さんご存じでしょうか?

 これは、金属-有機構造体(Metal-Organic Framework; MOF)と呼ばれる自己組織化型多孔性材料の模式図です。その代表的化合物、MOF-177[1]がおそらくこの仮想表紙のモチーフになっていると思われます。

 MOF-177は簡便に合成される高分子錯体です。合成後に溶媒を除去してやる事で、フレームワークだけが残り、黄色い球で示される”外部環境から隔絶した空間”をもつ化合物となります。青い多面体は、正四面体状に配位場をもつ亜鉛原子を表しています。無機化学領域ではこのような表記がしばしば見られます。

2015-11-14_03-34-38

 多孔性材料であるMOFは、その孔内に多量のガスを蓄えることができます。特にMOF-177は数ある多孔性材料の中では別格に大きな表面積(4500m2/g)をもち、低温で7.5wt%もの水素を吸蔵できる[2]ことが分かっています。水素ガスは低環境負荷の燃料として知られており、それを安全かつ多量に貯蔵し運搬する技術が進歩すれば、エネルギー問題の対策に効果的なストラテジーとなりえます。それゆえこれらの応用研究は、各方面から多大な注目を集めています。

 その他にも、吸着選択性を利用したガスの分離・浄化技術への応用、藤田教授らの報告と同様な特異的反応場としての活用、ユニークな化学選択性を有する不均一触媒への展開などが、MOFの応用例として考えられています。簡便に合成可能でありながら、無限大の応用性をもつとも言える化合物群なのです。

 まとめると、外部環境から隔絶された空間をもち、その特性を活かした幅広い応用が期待される、自己組織化型化合物―こういった観点で共通点をもつ二つの研究が(仮想)表紙を飾り、かつ第1号論文になっている、ということになります。このことからもNature Chemistry誌が提示する化学未来像の一つが、そういうものであることが伺えます。

Nature Chemistryの本格的公開はもう少し先になりますが、今後どんな論文が発表され、どういう新たなヴィジョンが打ち出されてくるのでしょうか。大いに期待して待ちたいところです。

関連論文

  1. Chae, H. E.; Siberio-Perez, D. Y.; Kim, J.; Go, Y.; Eddaoudi, M.; Matzger, A. J.; O’Keefe, M.; Yaghi, O. M. Nature 2004, 427, 523. doi:10.1038/nature02311
  2. Wong-Foy, A. G.; Matzger, A. J.; Yaghi, O. M. J. Am. Chem. Soc. 2006, 128, 3494. doi:10.1021/ja058213h

 

外部リンク

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 周期表の形はこれでいいのか? –その 2: s ブロックの位置 …
  2. 研究者xビジネス人材の交流イベント 「BRAVE GATE Me…
  3. 役に立たない「アートとしての科学」
  4. 【9月開催】第1回 マツモトファインケミカル技術セミナー 有機チ…
  5. 血液型をChemistryしてみよう!
  6. 化学研究ライフハック :RSSリーダーで新着情報をチェック!20…
  7. 人を器用にするDNAーナノ化学研究より
  8. ハウアミンAのラージスケール合成

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. アカデミックから民間企業への転職について考えてみる
  2. 密度汎関数法の基礎
  3. アザジラクチン あざじらくちん azadirachtin
  4. センチメートルサイズで均一の有機分子薄膜をつくる!”シンプル イズ ザ ベスト”の極意
  5. 第一手はこれだ!:古典的反応から最新反応まで3 |第8回「有機合成実験テクニック」(リケラボコラボレーション)
  6. オペレーションはイノベーションの夢を見るか? その1
  7. elements~メンデレーエフの奇妙な棚~
  8. アカデミックの世界は理不尽か?
  9. 塩にまつわるよもやま話
  10. センター試験を解いてみた

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2009年3月
 1
2345678
9101112131415
16171819202122
23242526272829
3031  

注目情報

最新記事

【十全化学】核酸医薬のGMP製造への挑戦

「核酸医薬」と聞いて、真っ先に思い起こすのは、COVID-19に対するmRNAワ…

十全化学株式会社ってどんな会社?

私たち十全化学は、医薬品の有効成分である原薬及び重要中間体の製造受託を担っている…

化学者と不妊治療

これは理系の夫視点で書いた、私たち夫婦の不妊治療の体験談です。ケムステ読者で不妊に悩まれている方の参…

リボフラビンを活用した光触媒製品の開発

ビタミン系光触媒ジェンタミン®は、リボフラビン(ビタミンB2)を活用した光触媒で…

紅麹を含むサプリメントで重篤な健康被害、原因物質の特定急ぐ

健康食品 (機能性表示食品) に関する重大ニュースが報じられました。血中コレステ…

ユシロ化学工業ってどんな会社?

1944年の創業から培った技術力と信頼で、こっそりセカイを変える化学屋さん。ユシロ化学の事業内容…

日本薬学会第144年会付設展示会ケムステキャンペーン

日本化学会の年会も終わりましたね。付設展示会キャンペーンもケムステイブニングミキ…

ペプチドのN末端でのピンポイント二重修飾反応を開発!

第 605回のスポットライトリサーチは、中央大学大学院 理工学研究科 応用化学専…

材料・製品開発組織における科学的考察の風土のつくりかた ー マテリアルズ・インフォマティクスを活用し最大限の成果を得るための筋の良いテーマとは ー

開催日:2024/03/27 申込みはこちら■開催概要材料開発を取り巻く競争や環境が激し…

石谷教授最終講義「人工光合成を目指して」を聴講してみた

bergです。この度は2024年3月9日(土)に東京工業大学 大岡山キャンパスにて開催された石谷教授…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP