[スポンサーリンク]

一般的な話題

Ns基とNos基とDNs基

[スポンサーリンク]

Ns(ノシル=2-Nitrobenzenesulfonyl)基といえば、アミンの保護および活性化の役割を果たす非常に頼もしい保護基です。ご存じの通り、菅敏幸先生、福山透先生によって開発された保護基です。

Kan, T.; Fukuyama, T. Chem. Commun. 2004, 353.

DOI: 10.1039/b311203a

言うまでもないと思いますが、Ns基はチオフェノールなどのチオールを求核付加させると、Meisenheimer錯体を経由して脱保護されます。この脱保護の反応条件は、多くの場合、他の保護基とオルトゴナルに脱保護することができます。

Ns2.gif

Ns基は2位にニトロ基を持ちますが、保護、アルキル化、脱保護のどの観点からしても、ニトロ基の位置は4位でも良い気がします。むしろニトロ基は4位にあった方がNMRの芳香環領域が見やすくて良い気がします。

 

一般的な表記ではないかもしれませんが、「人名反応に学ぶ有機合成戦略」という本では、この4位にニトロ基を有するタイプの保護基(すなわち4-Nitrobenzenesulfonyl基)を「Nos」という略語で示しています。実際Nos基でもNs基と同様の反応が行えるようです。しかしながら、保護基の導入において用いるNosClは、NsClと比べると非常に高価なので、あまり好んで利用する人はいないでしょう。これら2つの保護基が反応性に影響を及ぼすという報告例があれば面白そうです。

 

2位と4位の両方にニトロ基を有するタイプの保護基はときどき見かけます。DNs基です。

DNs.gif

ニトロ基が増えた分、Ns基よりも弱い求核剤でMeisenheimer錯体を形成し、容易に脱保護されます。今年、福山先生の講演を聞く機会があったのですが、「Meisenheimer錯体」が今、有機化学の教科書にきちんと載っているか心配されていました。

Meisenheimer錯体、ちゃんと多くの教科書に載っています。教科書の知識をいかに日々の研究に活かそうとするか、というところがNs基のケミストリーのような面白いケミストリーの発展に繋がっていくわけですね。

追記
静岡県立大の菅敏幸先生より
1)Nos基よりもNs基を用いる理由
2) DNs基の利点
3) 脱保護に用いるチオールの悪臭問題の解決法

を直接教えて頂きました。ありがとうございます!

Nos基(p-ニトロベンゼンスルホニル)でなく、Ns基(o-ニトロベンゼンスルホニル)を第一選択としている理由は、安価であることも一つの理由です。しかし、それだけでなくNos基の脱保護では副反応が進行する報告があるためです[1]
また、光延反応を行う場合はNs基の方が良好である場合が多いです。DNs基は、Ns基存在下、選択的な除去が可能[2[であり、より穏和な条件にて脱保護できるため不安定な化合物合成に有効です。[3]

また本保護器の脱保護の際、チオフェノールの悪臭の問題をよく聞かれます。アミン合成の場合は、過剰量を必要としますが4-カルボキシフェニルチオールを用いると微臭かつ後処理が簡便なようです。[4] また、フェノールのNs保護体の場合は 、2-アミノフェニルチオールが簡便です。

 

参考文献

[1]  Wuts, P. G.M.;Northuis,  J. M. Tetrahedoron Lett, 1998, 39, 3889. DOI: 10.1016/S0040-4039(98)00684-4 
[2] Fukuyama, T.; Cheung, M.;  Jow, C-K.; Hidai, Y.; Kan. T. Tetrahedron Lett. 1997, 38,  5831. DOI: 10.1016/S0040-4039(97)01334-8 
[3] Wakimoto, T.; Asakawa, T.; Akahoshi, S.; Suzuki, T.; Nagai, K.; Angew. Chem. Int. Ed.  2011, 50, 1168.  DOI;10.1002/anie.201004646
[4] M. Node et. al, Synth. Commun 2008, 38, 119.
[5] Aihara, Y.; Yoshida, A.; Furuta, T.; Wakimoto, T.; Akizawa, T.; Konishi, M.; Kan, T. Bio. Med. Chem. Lett, 2009, 19, 4171. DOI:10.1016/j.bmcl.2009.05.111

by  ブレビコミン 2011.11.6

 

関連書籍

 

らぱ

らぱ

投稿者の記事一覧

現在、博士課程にて有機合成化学を学んでいます。 特に、生体分子を模倣した超分子化合物に興味があります。よろしくお願いします。

関連記事

  1. 「未来博士3分間コンペティション2020」の挑戦者を募集
  2. コロナウイルスが免疫システムから逃れる方法(1)
  3. 溶媒としてアルコールを検討しました(笑)
  4. 酸化反応を駆使した(-)-deoxoapodineの世界最短合成…
  5. カリフォルニア大学バークレー校・化学科への学部交換留学
  6. 光触媒-ニッケル協働系によるシステイン含有ペプチドのS-アリール…
  7. 海外で働いている僕の体験談
  8. 化学のうた

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 赤﨑 勇 Isamu Akasaki
  2. ハートウィグ ヒドロアミノ化反応 Hartwig Hydroamination
  3. English for Presentations at International Conferences
  4. −(マイナス)と協力して+(プラス)を強くする触媒
  5. 塩にまつわるよもやま話
  6. 2009年ノーベル化学賞は誰の手に?
  7. (+)-マンザミンAの全合成
  8. シクロヘキサンの片面を全てフッ素化する
  9. 高機能・高性能シリコーン材料創製の鍵となるシロキサン結合のワンポット形成
  10. 「触媒的オリゴマー化」によるポリピロロインドリン類の全合成

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

富士フイルム和光純薬がケムステVプレミアレクチャーに協賛しました

ケムステVシンポとともにケムステオンライン講演会の両輪をなすケムステVプレミアクチャー(Vプレレク)…

ホウ素でがんをやっつける!

「ホウ素」と言ったときに皆さんは何を思い浮かべますか?鈴木宮浦カップリング、ルイス酸(BF3…

広瀬すずさんがTikTok動画に初挑戦!「#AGCチャレンジ」を開始

TikTok For BusinessとAGC株式会社は、AGCをより多くの人に知っていただくことを…

新規性喪失の例外規定とは?

bergです。今回は論文投稿・学会発表と特許出願を同時に行うための新規性喪失の例外規定の適用手続きに…

新車の香りは「発がん性物質」の香り、1日20分嗅ぐだけで発がんリスクが高まる可能性

「新車の香り」には、がんや生殖障害、子どもの先天性欠損症などを引き起こす可能性があるベンゼンやホルム…

溶液を流すだけで誰でも簡単に高分子を合成できるリサイクル可能な不均一系ラジカル発生剤の開発

第 295 回のスポットライトリサーチは東京大学豊田研究室の博士課程 1 年 岡美奈実さんと修士課程…

Carl Boschの人生 その9

Tshozoです。書いてると色々膨らんで収集がつかなくなりますね。ということで前回の続き。W…

創薬・医療系ベンチャー支援プログラム”BlockbusterTOKYO” ビジネスプラン発表会を開催!

東京都が主催し、Beyond Next Ventures株式会社が運営するBlockbuster T…

Chem-Station Twitter

PAGE TOP