[スポンサーリンク]

一般的な話題

Ns基とNos基とDNs基

[スポンサーリンク]

Ns(ノシル=2-Nitrobenzenesulfonyl)基といえば、アミンの保護および活性化の役割を果たす非常に頼もしい保護基です。ご存じの通り、菅敏幸先生、福山透先生によって開発された保護基です。

Kan, T.; Fukuyama, T. Chem. Commun. 2004, 353.

DOI: 10.1039/b311203a

言うまでもないと思いますが、Ns基はチオフェノールなどのチオールを求核付加させると、Meisenheimer錯体を経由して脱保護されます。この脱保護の反応条件は、多くの場合、他の保護基とオルトゴナルに脱保護することができます。

Ns基は2位にニトロ基を持ちますが、保護、アルキル化、脱保護のどの観点からしても、ニトロ基の位置は4位でも良い気がします。むしろニトロ基は4位にあった方がNMRの芳香環領域が見やすくて良い気がします。

 

一般的な表記ではないかもしれませんが、「人名反応に学ぶ有機合成戦略」という本では、この4位にニトロ基を有するタイプの保護基(すなわち4-Nitrobenzenesulfonyl基)を「Nos」という略語で示しています。実際Nos基でもNs基と同様の反応が行えるようです。しかしながら、保護基の導入において用いるNosClは、NsClと比べると非常に高価なので、あまり好んで利用する人はいないでしょう。これら2つの保護基が反応性に影響を及ぼすという報告例があれば面白そうです。

 

2位と4位の両方にニトロ基を有するタイプの保護基はときどき見かけます。DNs基です。

ニトロ基が増えた分、Ns基よりも弱い求核剤でMeisenheimer錯体を形成し、容易に脱保護されます。今年、福山先生の講演を聞く機会があったのですが、「Meisenheimer錯体」が今、有機化学の教科書にきちんと載っているか心配されていました。

Meisenheimer錯体、ちゃんと多くの教科書に載っています。教科書の知識をいかに日々の研究に活かそうとするか、というところがNs基のケミストリーのような面白いケミストリーの発展に繋がっていくわけですね。

追記
静岡県立大の菅敏幸先生より
1)Nos基よりもNs基を用いる理由
2) DNs基の利点
3) 脱保護に用いるチオールの悪臭問題の解決法

を直接教えて頂きました。ありがとうございます!

Nos基(p-ニトロベンゼンスルホニル)でなく、Ns基(o-ニトロベンゼンスルホニル)を第一選択としている理由は、安価であることも一つの理由です。しかし、それだけでなくNos基の脱保護では副反応が進行する報告があるためです[1]
また、光延反応を行う場合はNs基の方が良好である場合が多いです。DNs基は、Ns基存在下、選択的な除去が可能[2[であり、より穏和な条件にて脱保護できるため不安定な化合物合成に有効です。[3]

また本保護器の脱保護の際、チオフェノールの悪臭の問題をよく聞かれます。アミン合成の場合は、過剰量を必要としますが4-カルボキシフェニルチオールを用いると微臭かつ後処理が簡便なようです。[4] また、フェノールのNs保護体の場合は 、2-アミノフェニルチオールが簡便です。

 

参考文献

  1. Wuts, P. G.M.;Northuis,  J. M. Tetrahedoron Lett, 1998, 39, 3889. DOI: 10.1016/S0040-4039(98)00684-4 
  2. Fukuyama, T.; Cheung, M.;  Jow, C-K.; Hidai, Y.; Kan. T. Tetrahedron Lett. 1997, 38,  5831. DOI: 10.1016/S0040-4039(97)01334-8 
  3. Wakimoto, T.; Asakawa, T.; Akahoshi, S.; Suzuki, T.; Nagai, K.; Angew. Chem. Int. Ed.  2011, 50, 1168.  DOI;10.1002/anie.201004646
  4. M. Node et. al, Synth. Commun 2008, 38, 119.
  5. Aihara, Y.; Yoshida, A.; Furuta, T.; Wakimoto, T.; Akizawa, T.; Konishi, M.; Kan, T. Bio. Med. Chem. Lett, 2009, 19, 4171. DOI:10.1016/j.bmcl.2009.05.111

by  ブレビコミン 2011.11.6

 

関連書籍

[amazonjs asin=”1118057481″ locale=”JP” title=”Greene’s Protective Groups in Organic Synthesis”][amazonjs asin=”4759810684″ locale=”JP” title=”人名反応に学ぶ有機合成戦略”]

 

Avatar photo

らぱ

投稿者の記事一覧

現在、博士課程にて有機合成化学を学んでいます。 特に、生体分子を模倣した超分子化合物に興味があります。よろしくお願いします。

関連記事

  1. 誰でも参加OK!計算化学研究を手伝おう!
  2. 2024年度 第24回グリーン・サステイナブル ケミストリー賞 …
  3. Nazarov環化を利用した全合成研究
  4. ハイブリッド触媒系で複雑なシリルエノールエーテルをつくる!
  5. DNAが絡まないためのループ
  6. 結晶スポンジ法から始まったミヤコシンの立体化学問題は意外な結末
  7. 不安定な高分子原料を従来に比べて 50 倍安定化することに成功!…
  8. トリチウム水から完全無害な水素ガスを作り出す?

注目情報

ピックアップ記事

  1. 【追悼企画】世のためになる有機合成化学ー松井正直教授
  2. “呼吸するセラミックス” を使った酸素ガス分離・製造
  3. MEDCHEM NEWS 32-4 号「創薬の将来ビジョン」
  4. 米デュポンの第2四半期は減益、市場予想を下回る
  5. 研究費総額100万円!2050年のミライをつくる若手研究者を募集します【academist】
  6. 次世代医薬とバイオ医療
  7. スチュアート・シュライバー Stuart L. Schreiber
  8. MEDCHEM NEWS 34-2 号「2023年度医薬化学部会賞」
  9. 難分解性高分子を分解する画期的アプローチ:側鎖のC-H結合を活性化して主鎖のC-C結合を切る
  10. 海外機関に訪問し、英語講演にチャレンジ!~② アポを取ってみよう~

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2011年9月
 1234
567891011
12131415161718
19202122232425
2627282930  

注目情報

最新記事

有馬温泉で鉄イオン水溶液について学んできた【化学者が行く温泉巡りの旅】

有馬温泉の金泉は、塩化物濃度と鉄濃度が日本の温泉の中で最も高い温泉で、黄褐色を呈する温泉です。この記…

HPLCをPATツールに変換!オンラインHPLCシステム:DirectInject-LC

これまでの自動サンプリング技術多くの製薬・化学メーカーはその生産性向上のため、有…

MEDCHEM NEWS 34-4 号「新しいモダリティとして注目を浴びる分解創薬」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

圧力に依存して還元反応が進行!~シクロファン構造を活用した新機能~

第686回のスポットライトリサーチは、北海道大学大学院理学研究院化学部門 有機化学第一研究室(鈴木孝…

第58回Vシンポ「天然物フィロソフィ2」を開催します!

第58回ケムステVシンポジウムの開催告知をさせて頂きます!今回のVシンポは、コロナ蔓延の年202…

第76回「目指すは生涯現役!ロマンを追い求めて」櫛田 創 助教

第76回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第75回「デジタル技術は化学研究を革新できるのか?」熊田佳菜子 主任研究員

第75回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第74回「理想的な医薬品原薬の製造法を目指して」細谷 昌弘 サブグループ長

第74回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第57回ケムステVシンポ「祝ノーベル化学賞!金属有機構造体–MOF」を開催します!

第57回ケムステVシンポは、北川 進 先生らの2025年ノーベル化学賞受賞を記念して…

櫛田 創 Soh Kushida

櫛田 創(くしだそう)は日本の化学者である。筑波大学 数理物質系 物質工学域・助教。専門は物理化学、…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP