[スポンサーリンク]

化学者のつぶやき

芳香族カルボン酸をHAT触媒に応用する

[スポンサーリンク]

ミュンスター大・Gloriusらは、可視光レドックス触媒を用いる位置選択的なC(sp3)-Hチオトリフルオロメチル化反応を達成した。基質もしくは捕捉剤を過剰量用いる必要がない。水素原子移動(HAT)触媒として強力なベンゾイルオキシラジカルを用い、穏和な条件下に不活性C(sp3)-H結合活性化を達成したことが鍵である。

“Visible-Light-Promoted Activation of Unactivated C(sp3)-H Bonds and Their Selective Trifluoromethylthiolation”
Mukherjee, S.; Maji, B.; Tlahuext-Aca, A.; Glorius, F.* J. Am. Chem. Soc. 2016, 138, 16200. DOI: 10.1021/jacs.6b09970

問題設定と解決した点

 不活性C(sp3)-H結合の位置選択的変換は、現在の有機化学における重要かつ達成困難な課題である。過去には、配向基を用いる方法や基質の電子状態を利用した方法が開発されている。

 その中でもとくに温和な条件下で進行するものとして、可視光レドックス触媒水素原子移動(HAT)触媒を用いるC(sp3)-H変換反応がMacMillanらによって達成された。しかし彼らが用いているHAT触媒(チオール[1a]やキヌクリジン[1b])では、その結合解離エンタルピー(BDE)の上限ゆえ、活性化できる C(sp3)-H結合が比較的活性の高いアリル位・ベンジル位・ヘテロ原子α位に制限されていた。

 GloriusらはよりBDEの大きなC(sp3)-H結合の変換を達成すべく、ベンゾイルオキシラジカルに注目し、これをHAT触媒として用いることで制限を克服した。安息香酸のO-H結合はBDE=111kcal/molと非常に大きく、それから生じるベンゾイルオキシラジカルは、不活性なC-H結合も十分に活性化可能なレベルにある。

技術や手法の肝

 本触媒系は、Glorius らが以前に報告した”Mechanism-Based-Screening”によって見いだされた。これは、光触媒反応において蛍光スペクトルの強度測定から触媒と消光剤(=光触媒と反応可能性のある基質)のペアを簡便に見つけだす方法である[2]。

 この方法によって、Ir-F触媒([Ir(dF(CF3)ppy)2(dtbbpy)]PF6)と安息香酸テトラブチルアンモニウム塩のペアが見つけ出された。ベンゾイルオキシラジカルは脱炭酸を起こし分解しうるが、HAT過程のほうが速い(フェニルラジカルが生じにくい)ため、HAT触媒として活用できる。

 また、C-H活性化によって生じる炭素ラジカルの捕捉剤としては、N-トリフルオロメチルチオフタルイミド(Phth-SCF3を用いている。可視光レドックス触媒によるチオトリフルオロメチル化反応[3]を過去に自ら開発した経緯があったため、選択されたと考えられる。

主張の有効性検証

①条件の最適化と基質一般性の検討

(i) Ir-F触媒を1 mol%、HAT触媒(安息香酸塩)を 5 mol%にまで下げても良好な収率で反応は進行した。

(ii) 可視光、光触媒、HAT 触媒の 3 つが全て揃っていないと反応が進行しない。

(iii) BDEが低く電子豊富な C-H 結合が優先的に変換される(3 級>2 級>1 級)。

(iv) 複数の3級C-H結合を持つ基質の場合は、電子求引基(アシルオキシ基)から遠方にある3級C-H結合が優先的に反応する。

(v) シクロヘキサン、ヘテロ原子α位の C-H 結合変換も可能。SCF3源に対して2当量でOKであり、大抵の条件が過剰量使用していることに比べても大きく改善されている。Late-Stage官能基化も可能。

(vi) ヘテロ芳香環も基質として用いることができる。

基質リストの抜粋

②触媒サイクルの妥当性評価

(i) 光触媒と、基質もしくはSCF3源の間での消光は観測されない。

(ii) フタルイミドのN-H結合もそれなりに高いBDEを持つが、フタルイミドラジカルは2級C-H・3級C-H間でのC-H引き抜き選択性が良くないことから、フタルイミドラジカルがHAT触媒として機能している系ではないと考察されている。

提唱触媒サイクル(冒頭論文より引用)

議論すべき点

  • カルボン酸をHAT 触媒として活用可能なことを証明した革新的研究であるが、一方で強すぎるHAT触媒の欠点も浮かび上がっている。概して電子不足な基質に対してのみ使用可能であり、電子供与基を有するアリール基やベンジル位は適応外となる(messy になるとの記載あり)。こういった問題を考えると、カルボン酸HAT触媒を連関させてのNiクロスカップリング反応[1b]などは、(よほど基質を選ばない限り)実現困難と思われる。
  • 反応設計として巧みな点は、電子求引基であるSCF3基を導入する形式にして、生成物の電子密度を下げて官能基化を一発で止めている点にある。
  • ペプチドにおいても、ロイシン側鎖の3級C-H結合選択的なチオトリフルオロメチル化を現在検討中らしい。

次に読むべき論文は?

  • MacMillanらのphotoredox-HAT触媒系[1]
  • HAT触媒としてアミドを用いる最近の研究例[4]

参考文献

  1. (a) Cuthbertson, J. D.; MacMillan, D. W. C. Nature 2015, 519, 74. doi:10.1038/nature14255 (b) Shaw, M. H.; Shurtleff, V. W.; Terrett, J. A.; Cuthbertson, J. D.; MacMillan, D. W. C. Science 2016, 352, 1304. doi: 10.1126/science.aaf6635
  2. Hopkinson, M. N.; Gómez Suárez, A.; Teders, M.; Sahoo, B.; Glorius, F. Angew. Chem. Int. Ed. 2016, 55, 4361. DOI: 10.1002/anie.201600995
  3. (a) Honeker, R.; Ernst, J. B.; Glorius, F. Chem. Eur. J. 2015, 21, 8047. DOI: 10.1002/chem.201500957 (b) Honeker, R.; Garza-Sanchez, R. A.; Hopkinson, M. N.; Glorius, F. Chem. Eur. J. 2016, 22, 4295. DOI: 10.1002/chem.201600190 (c) Candish, L.; Pitzer, L.; Gomez-Suarez, A.; Glorius, F. Chem. Eur. J. 2016, 22, 4753. DOI: 10.1002/chem.201600421
  4. Choi, G. J.; Zhu, Q.; Miller, D. C.; Gu, C. J.; Knowles, R. R. Nature 2016, 539, 268. DOI: 10.1038/nature19811
The following two tabs change content below.
cosine

cosine

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。 関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。 素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 世界初の有機蓄光
  2. 「銅触媒を用いた不斉ヒドロアミノ化反応の開発」-MIT Buch…
  3. ついに成功した人工光合成
  4. メソポーラスシリカ(3)
  5. フェノールのC–O結合をぶった切る
  6. 信じられない!驚愕の天然物たち
  7. DNAに人工塩基対を組み入れる
  8. 海外でのアカデミックポジションの公開インタビュー

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 統合失調症治療の新しいターゲット分子候補−HDAC2
  2. 2016年8月の注目化学書籍
  3. リンダウ会議に行ってきた①
  4. モザイクワクチン HIVから人類を守る救世主となるか
  5. SciFinder Future Leaders in Chemistry参加のススメ
  6. ダウとデュポンの統合に関する小話
  7. B≡B Triple Bond
  8. 酸素ボンベ爆発、男性死亡 
  9. ドナルド・トマリア Donald Tomalia
  10. 生物学的等価体 Bioisostere

関連商品

注目情報

注目情報

最新記事

第47回―「ロタキサン・カテナン・クラウンエーテルの超分子化学」Harry Gibson教授

第47回の海外化学者インタビューは、ハリー・ギブソン教授です。バージニア工科大学の化学科に所属し、プ…

女優・吉岡里帆さんが、化学大好きキャラ「DIC岡里帆(ディーアイシーおか・りほ)」に変身!

印刷インキや有機顔料世界トップシェアのDIC株式会社は、2020年1月より、数々のヒット作に出演し、…

tRNAの新たな役割:大豆と微生物のコミュニケーション

畑に生えている大豆の根っこを抜いてみると、丸い粒みたいなものがたくさんできています。根粒(こんりゅう…

第46回―「分子レベルの情報操作を目指す」Howard Colquhoun教授

第46回の海外化学者インタビューは、ハワード・コルクホーン教授です。英国レディング大学の化学科に所属…

長期海外出張のお役立ちアイテム

ぼちぼち中堅と呼ばれる年齢にさしかかってきたcosineです。そんなお年頃のせいでしょうか、…

使っては・合成してはイケナイ化合物 |第3回「有機合成実験テクニック」(リケラボコラボレーション)

理系の理想の働き方を考える研究所「リケラボ」とコラボレーションとして「有機合成実験テクニック」の特集…

Chem-Station Twitter

PAGE TOP