[スポンサーリンク]

化学者のつぶやき

芳香族カルボン酸をHAT触媒に応用する

[スポンサーリンク]

ミュンスター大・Gloriusらは、可視光レドックス触媒を用いる位置選択的なC(sp3)-Hチオトリフルオロメチル化反応を達成した。基質もしくは捕捉剤を過剰量用いる必要がない。水素原子移動(HAT)触媒として強力なベンゾイルオキシラジカルを用い、穏和な条件下に不活性C(sp3)-H結合活性化を達成したことが鍵である。

“Visible-Light-Promoted Activation of Unactivated C(sp3)-H Bonds and Their Selective Trifluoromethylthiolation”
Mukherjee, S.; Maji, B.; Tlahuext-Aca, A.; Glorius, F.* J. Am. Chem. Soc. 2016, 138, 16200. DOI: 10.1021/jacs.6b09970

問題設定と解決した点

 不活性C(sp3)-H結合の位置選択的変換は、現在の有機化学における重要かつ達成困難な課題である。過去には、配向基を用いる方法や基質の電子状態を利用した方法が開発されている。

 その中でもとくに温和な条件下で進行するものとして、可視光レドックス触媒水素原子移動(HAT)触媒を用いるC(sp3)-H変換反応がMacMillanらによって達成された。しかし彼らが用いているHAT触媒(チオール[1a]やキヌクリジン[1b])では、その結合解離エンタルピー(BDE)の上限ゆえ、活性化できる C(sp3)-H結合が比較的活性の高いアリル位・ベンジル位・ヘテロ原子α位に制限されていた。

 GloriusらはよりBDEの大きなC(sp3)-H結合の変換を達成すべく、ベンゾイルオキシラジカルに注目し、これをHAT触媒として用いることで制限を克服した。安息香酸のO-H結合はBDE=111kcal/molと非常に大きく、それから生じるベンゾイルオキシラジカルは、不活性なC-H結合も十分に活性化可能なレベルにある。

技術や手法の肝

 本触媒系は、Glorius らが以前に報告した”Mechanism-Based-Screening”によって見いだされた。これは、光触媒反応において蛍光スペクトルの強度測定から触媒と消光剤(=光触媒と反応可能性のある基質)のペアを簡便に見つけだす方法である[2]。

 この方法によって、Ir-F触媒([Ir(dF(CF3)ppy)2(dtbbpy)]PF6)と安息香酸テトラブチルアンモニウム塩のペアが見つけ出された。ベンゾイルオキシラジカルは脱炭酸を起こし分解しうるが、HAT過程のほうが速い(フェニルラジカルが生じにくい)ため、HAT触媒として活用できる。

 また、C-H活性化によって生じる炭素ラジカルの捕捉剤としては、N-トリフルオロメチルチオフタルイミド(Phth-SCF3を用いている。可視光レドックス触媒によるチオトリフルオロメチル化反応[3]を過去に自ら開発した経緯があったため、選択されたと考えられる。

主張の有効性検証

①条件の最適化と基質一般性の検討

(i) Ir-F触媒を1 mol%、HAT触媒(安息香酸塩)を 5 mol%にまで下げても良好な収率で反応は進行した。

(ii) 可視光、光触媒、HAT 触媒の 3 つが全て揃っていないと反応が進行しない。

(iii) BDEが低く電子豊富な C-H 結合が優先的に変換される(3 級>2 級>1 級)。

(iv) 複数の3級C-H結合を持つ基質の場合は、電子求引基(アシルオキシ基)から遠方にある3級C-H結合が優先的に反応する。

(v) シクロヘキサン、ヘテロ原子α位の C-H 結合変換も可能。SCF3源に対して2当量でOKであり、大抵の条件が過剰量使用していることに比べても大きく改善されている。Late-Stage官能基化も可能。

(vi) ヘテロ芳香環も基質として用いることができる。

基質リストの抜粋

②触媒サイクルの妥当性評価

(i) 光触媒と、基質もしくはSCF3源の間での消光は観測されない。

(ii) フタルイミドのN-H結合もそれなりに高いBDEを持つが、フタルイミドラジカルは2級C-H・3級C-H間でのC-H引き抜き選択性が良くないことから、フタルイミドラジカルがHAT触媒として機能している系ではないと考察されている。

提唱触媒サイクル(冒頭論文より引用)

議論すべき点

  • カルボン酸をHAT 触媒として活用可能なことを証明した革新的研究であるが、一方で強すぎるHAT触媒の欠点も浮かび上がっている。概して電子不足な基質に対してのみ使用可能であり、電子供与基を有するアリール基やベンジル位は適応外となる(messy になるとの記載あり)。こういった問題を考えると、カルボン酸HAT触媒を連関させてのNiクロスカップリング反応[1b]などは、(よほど基質を選ばない限り)実現困難と思われる。
  • 反応設計として巧みな点は、電子求引基であるSCF3基を導入する形式にして、生成物の電子密度を下げて官能基化を一発で止めている点にある。
  • ペプチドにおいても、ロイシン側鎖の3級C-H結合選択的なチオトリフルオロメチル化を現在検討中らしい。

次に読むべき論文は?

  • MacMillanらのphotoredox-HAT触媒系[1]
  • HAT触媒としてアミドを用いる最近の研究例[4]

参考文献

  1. (a) Cuthbertson, J. D.; MacMillan, D. W. C. Nature 2015, 519, 74. doi:10.1038/nature14255 (b) Shaw, M. H.; Shurtleff, V. W.; Terrett, J. A.; Cuthbertson, J. D.; MacMillan, D. W. C. Science 2016, 352, 1304. doi: 10.1126/science.aaf6635
  2. Hopkinson, M. N.; Gómez Suárez, A.; Teders, M.; Sahoo, B.; Glorius, F. Angew. Chem. Int. Ed. 2016, 55, 4361. DOI: 10.1002/anie.201600995
  3. (a) Honeker, R.; Ernst, J. B.; Glorius, F. Chem. Eur. J. 2015, 21, 8047. DOI: 10.1002/chem.201500957 (b) Honeker, R.; Garza-Sanchez, R. A.; Hopkinson, M. N.; Glorius, F. Chem. Eur. J. 2016, 22, 4295. DOI: 10.1002/chem.201600190 (c) Candish, L.; Pitzer, L.; Gomez-Suarez, A.; Glorius, F. Chem. Eur. J. 2016, 22, 4753. DOI: 10.1002/chem.201600421
  4. Choi, G. J.; Zhu, Q.; Miller, D. C.; Gu, C. J.; Knowles, R. R. Nature 2016, 539, 268. DOI: 10.1038/nature19811
Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 胃薬のラニチジンに発がん性物質混入のおそれ ~簡易まとめ
  2. 企業研究者のためのMI入門①:MI導入目的の明確化と使う言語の選…
  3. リビングラジカル重合ガイドブック -材料設計のための反応制御-
  4. カルボン酸をホウ素に変換する新手法
  5. 4歳・2歳と学会・領域会議に参加してみた ①
  6. 光速の文献管理ソフト「Paperpile」
  7. 天才児の見つけ方・育て方
  8. 2015年化学生物総合管理学会春季討論集会

注目情報

ピックアップ記事

  1. サンケイ化学、フェロモン剤を自社生産
  2. 存命化学者達のハーシュ指数ランキングが発表
  3. Excelでできる材料開発のためのデータ解析[超入門]-統計の基礎や機械学習との違いを解説-
  4. 甲種危険物取扱者・合格体験記~読者の皆さん編
  5. ジボラン(diborane)
  6. 日本薬学会第145年会 に参加しよう!
  7. マイクロ波を用いた革新的製造プロセスと電材領域への事業展開 (ナノ粒子合成、フィルム表面処理/乾燥/接着/剥離、ポリマー乾燥/焼成など)
  8. オスミウム活性炭素 –ニトロ基選択的還元触媒–
  9. 有機合成化学協会誌2022年3月号:トリフリル基・固相多点担持ホスフィン・触媒的アリル化・スルホニル基・荷電π電子系/ 菅 敏幸 先生追悼
  10. カルボン酸だけを触媒的にエノラート化する

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2017年3月
 12345
6789101112
13141516171819
20212223242526
2728293031  

注目情報

最新記事

有馬温泉で鉄イオン水溶液について学んできた【化学者が行く温泉巡りの旅】

有馬温泉の金泉は、塩化物濃度と鉄濃度が日本の温泉の中で最も高い温泉で、黄褐色を呈する温泉です。この記…

HPLCをPATツールに変換!オンラインHPLCシステム:DirectInject-LC

これまでの自動サンプリング技術多くの製薬・化学メーカーはその生産性向上のため、有…

MEDCHEM NEWS 34-4 号「新しいモダリティとして注目を浴びる分解創薬」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

圧力に依存して還元反応が進行!~シクロファン構造を活用した新機能~

第686回のスポットライトリサーチは、北海道大学大学院理学研究院化学部門 有機化学第一研究室(鈴木孝…

第58回Vシンポ「天然物フィロソフィ2」を開催します!

第58回ケムステVシンポジウムの開催告知をさせて頂きます!今回のVシンポは、コロナ蔓延の年202…

第76回「目指すは生涯現役!ロマンを追い求めて」櫛田 創 助教

第76回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第75回「デジタル技術は化学研究を革新できるのか?」熊田佳菜子 主任研究員

第75回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第74回「理想的な医薬品原薬の製造法を目指して」細谷 昌弘 サブグループ長

第74回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第57回ケムステVシンポ「祝ノーベル化学賞!金属有機構造体–MOF」を開催します!

第57回ケムステVシンポは、北川 進 先生らの2025年ノーベル化学賞受賞を記念して…

櫛田 創 Soh Kushida

櫛田 創(くしだそう)は日本の化学者である。筑波大学 数理物質系 物質工学域・助教。専門は物理化学、…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP