[スポンサーリンク]

スポットライトリサーチ

有機半導体の界面を舞台にした高効率光アップコンバージョン

[スポンサーリンク]

第356回のスポットライトリサーチは、分子研 平本研究室で助教を務められている伊澤 誠一郎 先生にお願いしました。

平本研究室は有機半導体デバイスの分野で、真空蒸着プロセスを利用して画期的な有機デバイスを提案してきた研究室です。今や有機薄膜太陽電池で標準的な構造の一つとなっているバルクヘテロジャンクション(BHJ)構造を世界に先駆けて進展させたのも平本研究室です。

今回ご紹介いただける成果は、有機半導体界面を光アップコンバージョンに応用した画期的な成果です。ドナー分子とアクセプター分子の固体界面に励起状態が到達すると、電荷移動による励起子の電荷分離が起こることが知られています。今回の成果は、その有機半導体界面で生じる電荷分離を巧妙に利用し、光アップコンバージョンの効率向上にブレークスルーをもたらしたという報告です。シンプルな組み合わせから素晴らしい機能を引き出した点が高く評価され、Nature Photonics誌に原著論文として公開、分子研からプレスリリースされたほかYahooニュースなどでも取り上げられています。

“Efficient Solid-State Photon Upconversion Enabled by Triplet Formation at an Organic Semiconductor Interface”
Seiichiro Izawa*, Masahiro Hiramoto, Nature Photonics 2021, 15, 895–900. DOI: 10.1038/s41566-021-00904-w

もともとは太陽電池の研究をされていた伊澤さんですが、今回はある意味逆の、発光させる方向性での素晴らしい報告です。どうやってそんな違った発想にたどり着いたのか、インタビューの中にもヒントがあるかもしれません。それでは伊澤先生のインタビューをお楽しみください!

Q1. 今回プレスリリースとなったのはどんな研究ですか?簡単にご説明ください。

長波長の光をエネルギーの高い短波長の光に変換する技術はフォトンアップコンバージョンと呼ばれ、太陽電池や光触媒の効率向上や、近赤外光センサや生体内光遺伝子治療などへの応用が期待され活発に研究されています。従来は、感光体分子内に含まれる重原子を使って、光吸収で生成した一重項励起子を三重項励起子にスピン反転させ、その後、二つの三重項励起子から一つの一重項励起子を作る三重項消滅により光のエネルギーを高めていました。しかし、従来の報告例は溶液中が多く、応用上重要な固体中では効率が低いこと、またレーザー光などの高強度の励起光やレアメタルや有害元素が含まれる分子が必要なことなどが問題とされています。

本研究では、有機ELや有機太陽電池などに用いられる有機半導体の積層膜を用い、その界面で近赤外光をエネルギーの高い黄色の可視光に高効率に変換できる新技術を発明しました(図1a)。その原理は、有機太陽電池の発電プロセスと同様に、光吸収で生成した励起子を一旦、スピンの向きがランダムな自由電荷に分離します。その後、それらが再び界面で出会った際に、スピンが反転した三重項励起子が生成し、三重項消滅からアップコンバージョン発光が観測されます(図1b)。この機構のおかげで、用いた材料は有機軽元素のみで構成され、さらに光強度が弱いLED光の励起でも従来の固体中での報告例よりも約100倍高い変換効率を実現しました。今回の成果により、軽くて曲がる有機薄膜上でのアップコンバージョンが可能となり、太陽電池や光センサなどへの応用が期待できます。

Q2. 本研究テーマについて、自分なりに工夫したところ、思い入れがあるところを教えてください。

この研究を行うまで私は主に次世代のエネルギー源として期待される有機太陽電池の研究をしてきました。有機太陽電池の現在の課題は、失活プロセスである再結合を抑制することです。それは“太陽電池を光らせる”ことを意味するのですが、これが非常に難しく、日夜論文などで勉強し、アイディアを練っていました。

転機となったのは、応用物理学会の有機分子バイオエレクトロニクス分科会の幹事になったことです。そこで様々な分野の研究者の方々と関わり合いを持つようになり、特に有機ELが専門の方々から多くの話を聞きました。そこで有機ELでは界面で三重項消滅を経て発光させる機構のデバイスがあることを知り、有機太陽電池の電荷生成プロセスを組み合わせれば、光励起のアップコンバージョン発光ができるのではという、今回の研究の基となる着想を得ました。有機太陽電池の効率向上の研究はまだ道半ばですが、アップコンバージョンを最初から目指していたわけではなかったからこそ、分野内の研究者とは異なる発想の研究ができたのではないかと思います。

Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?

私自身はアップコンバージョン関連の研究は全く行ったことがなかったので、測定系の構築に苦労しました。私が所属している分子科学研究所は大学共同利用機関法人ということで、大学や民間の研究者などが共同で研究を進めるための機関としての目的があり、機器センターが充実しています。そこで技官の上田さんに測定系のセットアップなど大変お世話になりました。界面でアップコンバージョンをさせるというアイディアが成功するかどうかもわからなかった時に、近赤外LED光を有機膜に当てて、黄色の発光が見えた時の感動は非常に鮮明に覚えています。
論文化は非常に苦労して、最初の投稿からアクセプトまで一年半近くかかりました。厳しいレフェリーコメントもアドバイスをくれているのだとなるべくポジティブに捉えて、なんとかメンタルを保ちつつ乗り越えました。

Q4. 将来は化学とどう関わっていきたいですか?

最初はエネルギー問題への貢献がしたいという気持ちで有機太陽電池研究の世界に入りましたが、最近では分子構造や凝集状態の影響が物性やデバイス性能に如実に現れる有機半導体の性質に非常に面白さを感じて研究を進めています。これまで研究を行ってきた有機半導体界面での光物性という観点を大切にしつつも、自分の好奇心が赴くところに素直に研究を進めていければいいなと思っています。新しいものを作り出す化学の研究は非常に面白いので、今後も携わっていきたいと思います。

Q5. 最後に、読者の皆さんにメッセージをお願いします。

今回の成果は共同研究ではないですが、やはり異なるバックグラウンドをもつ人と話すことは研究を進める上で非常に大切だと思います。例えば、有機太陽電池と有機ELは、同じ有機半導体光デバイスですが、その作製方法など様々な文化の違いもあって、話すと意外な発見もありました。このご時世でリアルの学会が開催されなくなり現状難しいかもしれませんが、ポスターセッションや懇親会などで積極的に他の分野の研究者に話しかけてみてください。自分の研究分野を深く学び軸を持った上で、他の分野に目を向けられれば、予想外の発見をできる可能性が広がると思います。

最後になりますが、本研究を行うにあたり熱心にご指導頂きました分子研の平本昌宏先生、学生時代から現在までも様々なアドバイスを頂いております理研の但馬敬介先生に深く感謝申し上げます。

関連リンク

  1. 研究室HP:分子研 平本研究室
  2. プレスリリース:目に見えない近赤外光を高効率に可視光に変換する新技術を発明
  3. ヤフーニュース:有機半導体の塗布膜で「世界初」の光の変換に成功、太陽電池の効率向上へ

研究者の略歴

Profile:

名前:伊澤 誠一郎

所属:自然科学研究機構 分子科学研究所 物質分子科学研究領域 分子機能研究部門

専門:有機半導体光・界面物性、有機光デバイス

略歴:
2006年 愛知県立時習館高校 卒
2010年 東京大学工学部応用化学科 卒
2012年 東京大学大学院工学系研究科応用化学専攻 修士課程修了
2015年 東京大学大学院工学系研究科応用化学専攻 博士課程修了(工学博士)
2015年 日本学術振興会 特別研究員(PD)
2015年 理化学研究所 訪問研究員
2015年 カリフォルニア大学サンタバーバラ校 訪問研究員
2016年-現在 分子科学研究所 助教
2021年-現在 JSTさきがけ研究者(兼任)

spectol21

投稿者の記事一覧

ニューヨークでポスドクやってました。今は旧帝大JK。専門は超高速レーザー分光で、分子集合体の電子ダイナミクスや、有機固体と無機固体の境界、化学反応の実時間観測に特に興味を持っています。

関連記事

  1. 日本プロセス化学会2019 ウインターシンポジウム
  2. 林 雄二郎博士に聞く ポットエコノミーの化学
  3. フリーラジカルの祖は一体誰か?
  4. 化学者のためのエレクトロニクス講座~半導体の歴史編~
  5. 最近の有機化学論文2
  6. 第24回ACSグリーンケミストリー&エンジニアリング会…
  7. 低分子の3次元構造が簡単にわかる!MicroEDによる結晶構造解…
  8. 論文投稿・出版に役立つ! 10の記事

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. ノーベル化学賞田中さん 富山2大学の特任教授に
  2. 今週末は「科学の甲子園」観戦しよーぜ
  3. 紹介会社を使った就活
  4. ベンゼンの直接アルキル化
  5. ダグ・ステファン Douglas W. Stephan
  6. 熱活性化遅延蛍光 Thermally Activated Delayed Fluorescence (TADF)
  7. pH応答性硫化水素ドナー分子の開発
  8. バールエンガ試薬 Barluenga’s Reagent
  9. 脱法ドラッグ、薬物3成分を初指定 東京都
  10. Chemistry Reference Resolverをさらに便利に!

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2021年12月
« 11月   1月 »
 12345
6789101112
13141516171819
20212223242526
2728293031  

注目情報

注目情報

最新記事

生体医用イメージングを志向した第二近赤外光(NIR-II)色素:③その他の材料

バイオイメージングにおけるの先端領域の一つである「第二近赤外光(NIR-II)色素」についての総説を…

自己多層乳化を用いたマトリョーシカ微粒子の調製 〜油と水を混ぜてすぐ固めるだけ〜

岡山大学学術研究院自然科学学域(工)の渡邉貴一研究准教授と同大学院自然科学研究科博士前期課程の安原有…

【書籍】セルプロセッシング工学 (増補) –抗体医薬から再生医療まで–

今回ご紹介する書籍「セルプロセッシング工学 (増補) –抗体医薬から再生医療まで–」は、20…

芳香環にフッ素を導入しながら変形する: 有機フッ素化合物の新規合成法の開発に成功

第361回のスポットライトリサーチは、早稲田大学大学院先進理工学研究科(山口潤一郎研究室)小松田 雅…

湘南ヘルスイノベーションパークがケムステVプレミアレクチャーに協賛しました

レジェンド化学者もしくは第一人者の長時間講演を完全無料で放映する、ケムステVプレ…

化学企業が相次いで学会や顧客から表彰される

武蔵エナジーソリューションズ株式会社に所属する研究者が、2022年度電気化学会技術賞(棚橋賞)を受賞…

第20回次世代を担う有機化学シンポジウム

第20回記念!今年は若手向けの新企画もやります!「若手研究者が口頭発表する機会や自由闊達にディス…

ビナミジニウム塩 Vinamidinium Salt

概要ビナミジニウム塩(Vinamidinium Salt)は、カルボン酸をヴィルスマイヤー・ハッ…

伝わるデザインの基本 増補改訂3版 よい資料を作るためのレイアウトのルール

(さらに…)…

生体医用イメージングを志向した第二近赤外光(NIR-II)色素:②合成蛍光色素

バイオイメージングにおけるの先端領域の一つである「第二近赤外光(NIR-II)色素」についての総説を…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP