[スポンサーリンク]

化学者のつぶやき

1-ヒドロキシタキシニンの不斉全合成

[スポンサーリンク]

2つのラジカル反応を鍵反応として6/8/6員炭素骨格を効率的に構築し、1-ヒドロキシタキシニンの不斉全合成に成功した。

強力な生物活性を有する複雑天然物タキサンジテルペノイド

イチイの茎から単離された1-ヒドロキシタキシニン(1)は、400を超える同族体を含むタキサンジテルペノイドファミリーに属し、マウス白血病細胞(L1210)およびヒト上皮性口腔癌細胞(KB)に対して細胞毒性を示す(図1A)。
タキサンジテルペノイドの多くは生物学的に重要な特性を持っており、中でも最も生物活性の高い同族体の1つであるタキソール(2)は、さまざまな癌の治療に臨床的に使用される(図1B)。タキサンジテルペノイドは6/8/6員炭素骨格(ABC環)を共通骨格としてもち、酸素官能基の置換様式によって様々な天然物が存在する。1は酸素原子で置換された6つの炭素(C1, 2, 5, 9, 10および13)と2つの4級炭素(C8, 15)、2つのオレフィン(C4, 11)を有し、この酸素官能基密集型の骨格が合成を困難なものとしている。
今までに同族体2の全合成は10グループが達成しているものの(1)1の全合成は1998年のらのグループによる一例のみに限られる(2)。本合成は最長直線工程数38段階と工程数が多く、より効率的に1を合成する方法の確立が求められていた(図1C)。
今回、東京大学の井上教授らは市販品である2,2-ジメチル-1,3-シクロヘキサンジオン(3)から1の不斉全合成を26工程(総収率0.015%)で達成した(図1D)。独自に開発したα-アルコキシアシルテルリドを用いたラジカル反応(3)、および分子内ピナコールカップリング反応による効率的なB環構築が成功の鍵となっている。

図1. (A) 1-ヒドロキシタキシニン(1) (B) タキソール(2) (C) 岸らの手法 (C) 今回の逆合成解析

 

“Total Synthesis of 1-Hydroxytaxinine”

Imamura, Y.; Yoshioka, S.; Nagatomo, M.; Inoue, M. Angew. Chem., Int. Ed. 2019, Early View.

DOI:10.1002/anie.201906872

論文著者の紹介


研究者:井上将行
研究者の経歴:
1993 東京大学理学部化学科卒業
1998 東京大学大学院理学系研究科博士課程修了(橘和夫教授)
1998-2000 スローン・ケタリング癌研究所博士研究員(Samuel J. Danishefsky教授)
2000-2003 東北大学大学院理学研究科助手(平間正博教授)
2003-2004 東北大学大学院理学研究科講師
2004-2007 東北大学大学院理学研究科助教授
2007-現在東京大学大学院薬学系研究科教授
研究内容:官能基密集型生物活性天然物及び巨大ペプチド系天然物の全合成研究とそのための新規反応開発

論文の概要

出発原料3から5工程でエステル4を合成した後、シャープレス不斉ジヒドロキシル化により光学活性なジオール5を得た。続く2工程で調製したアシルテルリド6に対し、空気雰囲気下、トリエチルホウ素を作用させると脱一酸化炭素を伴ってa-アルコキシラジカルAが生じる。このラジカルがシクロヘキセノン7へ付加することでA, C環連結体Bを与えた。さらに、ワンポットでのDDQ酸化によりエノン8へと導いた。8に対する有機銅試薬の1,4-付加によりC8位の不斉炭素を構築した後、2工程を経て9を得た。
続いて、ピナコールカップリングによるジオール10への変換を試みた。検討の結果、9に対し四塩化チタンと亜鉛、ピリジンをTHF溶媒中50 °Cで反応させることで10を合成することに成功した(詳細は論文を参照)。
この際、10とジアステレオマーC2-epi-10は分離困難であったが、続く10のC2位選択的アセチル化後に11は単離できた。次に、11のC5, C13位の酸化及びC5位のシンナミル化を含む6工程の変換で12を得た。なお、種々の試薬を用いてC4位のケトンのメチレン化を試みたがオレフィンは得られず、異なる手法を用いてエキソオレフィンを構築する必要があった。
そこで、C4位のメチル化を含む3工程で3級アルコール13へと誘導した。最後にバージェス試薬による脱水とシリル基の除去を経て1の全合成を達成した。なお、C1位のヒドロキシ基を保護しない場合はワーグナー・メーヤワイン転位が進行し、1は得られなかった。

図2. 1-ヒドロキシタキシニンの全合成

 

以上、分子間および分子内2つのラジカル反応を組み合わせた効率的なB環構築法により1-ヒドロキシタキシニンの不斉全合成を達成した。今回開発された合成法が他の同族体の合成に応用されることにより、タキサンジテルペノイドのさらなる生物学的研究の発展が期待される。

参考文献

  1. (a) Holton, R. A.; Kim, H.-B.; Somoza, C.; Liang, F.; Biediger, R. J.; Boatman, P. D.; Shindo, M.; Smith, C. C.; Kim, S.; Nadizadeh, H.; Suzuki, Y.; Tao, C.; Vu, P.; Tang, S.; Zhang, P.; Murthi, K. K.; Gentile, L. N.; Liu, J. H. J. Am. Chem. Soc.1994, 116, 1599. DOI: 10.1021/ja00083a067(b) Nicolaou, K. C.; Ueno, H.; Liu, J.-J.; Nantermet, P. G.; Yang, Z.; Renaud, J.; Paulvannan, K.; Chadha, R. J. Am. Chem. Soc.1995, 117, 653. DOI: 10.1021/ja00107a009(c) Danishefsky, S. J.; Masters, J. J.; Young, W. B.; Link, J. T.; Snyder, L. B.; Magee, T. V.; Jung, D. K.; Isaacs, R. C. A.; Bornmann, W. G.; Alaimo, C. A.; Coburn, C. A.; Grandi, M. J. D. J. Am. Chem. Soc.1996, 118, 2843. DOI: 10.1021/ja952692a(d) Wender, P. A.; Badham, N. F.; Conway, S. P.;Floreancig, P. E.; Glass, T. E.; Houze, J. B.; Krauss, N. E.; Lee, D.; Marquess, D. G.; McGrane, P. L.; Meng, W.; Natchus, M. G.; Shuker, A. J.; Sutton, J. C.; Taylor, R. E. J. Am. Chem. Soc.1997, 119, 2757. DOI: 10.1021/ja963539z(e) Mukaiyama, T.; Shiina, I.; Iwadare, H.; Saitoh, M.; Nishimura, T.; Ohkawa, N.; Sakoh, H.; Nishimura, K.; Tani, Y.; Hasegawa, M.; Yamada, K.; Saitoh, K. Chem. Eur. J. 1999,5, 121. DOI: 10.1002/(SICI)1521-3765(19990104)5:1<121::AID-CHEM121>3.0.CO;2-O(f) Kusama, H.; Hara, R.; Kawahara, S.; Nishimori, T.; Kashima, H.; Nakamura, N.; Morihira, K.; Kuwajima, I. J. Am. Chem. Soc.2000, 122, 3811. DOI: 10.1021/ja9939439(g) Jongwon, L. PhD thesis, Harvard University (USA), 2000. (h) Doi, T.; Fuse, S.; Miyamoto, S.; Nakai, K.; Sasuga, D.; Takahashi, T. Chem. Asian J.2006, 1, 370. DOI: 10.1002/asia.200600156(i) Hirai, S.; Utsugi, M.; Iwamoto, M.; Nakada, M. Chem. Eur. J. 2015, 21, 355. DOI: 10.1002/chem.201404295(j) Fukaya, K.; Kodama, K.; Tanaka, Y.; Yamazaki, H.; Sugai, T.; Yamaguchi, Y.; Watanabe, A.; Oishi, T.; Sato, T.; Chida, N. Org. Lett. 2015, 17, 2574.DOI: 10.1021/acs.orglett.5b01174
  2. Sheng, X. C. PhD thesis, Harvard University (USA), 1998.
  3. (a) Nagatomo, M.; Nishiyama, H.; Fujino, H.; Inoue, M. Angew. Chem., Int. Ed. 2015, 54, 1537. DOI: 10.1002/anie.201410186(b) Nagatomo, M.; Kamimura, D.; Matsui, Y.; Masuda, K.; Inoue, M. Chem. Sci. 2015, 6, 2765. DOI: 10.1039/C5SC00457H(c) Matsumura, S.; Matsui, Y.; Nagatomo, M.; Inoue, M. Tetrahedron 2016, 72, 4859. DOI:10.1016/j.tet.2016.06.056(d) Kuwana, D.; Ovadia, B.; Kamimura, D.; Nagatomo, M.; Inoue, M. Asian J. Org. Chem. 2019, 8, 1088. DOI: 10.1002/ajoc.201900170
山口 研究室

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 分子振動と協奏する超高速励起子分裂現象の解明
  2. 博士課程学生の経済事情
  3. シクロヘキサンの片面を全てフッ素化する
  4. 有機フッ素化合物の新しいビルドアップ構築法 ~硫黄官能基が導く逐…
  5. 高機能な導電性ポリマーの精密合成法の開発
  6. サイエンスアゴラの魅力を聞くー「日本蛋白質構造データバンク」工藤…
  7. サイコロを作ろう!
  8. π⊥ back bonding; 逆供与でπ結合が強くなる?!

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. PCC/PDC酸化 PCC/PDC Oxidation
  2. 輸出貿易管理令
  3. 機械的刺激による結晶間相転移に基づく発光性メカノクロミズム
  4. フランスの著名ブロガー、クリーム泡立器の事故で死亡
  5. 既存の農薬で乾燥耐性のある植物を育てる
  6. NHC銅錯体の塩基を使わない直接的合成
  7. 相次ぐ海外化学企業の合併
  8. 「電子の動きを観る」ーマックスプランク研究所・ミュンヘン大学・Krausz研より
  9. ケムステ国際版・中国語版始動!
  10. オリンピセン (olympicene)

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

【書籍】電気化学インピーダンス 数式と計算で理解する基礎理論

(↓kindle版)概要インピーダンス測定の結果をいかに解釈すべきか.その理…

国際化学オリンピック、日本の高校生4名「銀」獲得

文部科学省は2020年7月31日、オンラインで開催された「第52回国際化学オリンピック」に参加した高…

有機合成化学協会誌2020年8月号:E2212製法・ヘリセン・炭素架橋オリゴフェニレンビニレン・ジケトホスファニル・水素結合性分子集合体

有機合成化学協会が発行する有機合成化学協会誌、2020年8月号がオンライン公開されました。今回は担当…

第八回ケムステVシンポジウム「有機無機ハイブリッド」を開催します!

夏真っ盛りですね。某ウイルスのもろもろに目を奪われがちですが、この季節は熱中症にも気をつけましょう。…

巧みに設計されたホウ素化合物と可視光からアルキルラジカルを発生させる

第268回のスポットライトリサーチは、金沢大学医薬保健研究域薬学系(大宮研究室)の佐藤 由季也(さと…

第111回―「予防・診断に有効なナノバイオセンサーと太陽電池の開発」Ted Sargent教授

第111回の海外化学者インタビューは、Ted Sargent教授です。トロント大学電気・計算機工学科…

アレノフィルを用いるアレーンオキシドとオキセピンの合成

脱芳香族化を伴う直接的な酸化により芳香族化合物からアレーンオキシドとオキセピンを合成する手法が開発さ…

ケムステニュース 化学企業のグローバル・トップ50が発表【2020年版】

It's no secret that the COVID-19 pandemic ha…

Chem-Station Twitter

PAGE TOP