[スポンサーリンク]

化学者のつぶやき

2つのグリニャールからスルホンジイミンを作る

[スポンサーリンク]

グリニャール試薬とスルフィニルアミンを用いたスルホンジイミン合成が達成された。爆発性物質、臭気性物質を使用しない手法であり工業的な利用が期待される。

含硫黄生物活性物質の合成法

6価の硫黄を含む官能基は生物活性物質に顕著に見られ、スルホンアミドやスルホンは多くの農薬や医薬品に組み込まれている(1)

近年スルホンジイミン、スルホキシイミンもその化学特性が製薬業界に認識され始め、注目を集めている(図1A)(2)

スルホンジイミンの特徴は硫黄を中心に4つの置換基全てを変換できるという点にある。スルホンジイミンの合成は1970年にHaakeらによって達成された(図1B)(3)。この手法では、ジアルキルスルフィドを用いた際には中程度の収率で対応するスルホンジイミンが得られるものの、アルキルアリールスルフィド、ジアリールスルフィドを用いた際は低収率に留まる。

2012年にBolmらはチオエーテルからO-(メシチレンスルホニル)ヒドロキシルアミン(MSH)によって調製されるスルフィルイミンのクロロ化、続くイミノ化を用いたスルホンジイミン合成法を報告した(図1C)(4)。しかし、この手法はメチルアリールスルフィドでは対応するスルホンジイミンが中程度の収率で得られるものの、ジアリールスルフィドでは低収率であった。ジアルキルスルホンジイミンに関しては1例しか示されていない。さらに、悪臭をもつチオエーテルを基質として使用する点、爆発性があるMSHを用いる点などの、操作面での課題も残されていた。

今回Willis教授らは安定かつ扱いが容易なスルフィニルアミンを出発物質とする簡便なスルフィルイミン合成法および、スルフィルイミンの直接ジイミノ化法を開発することでスルホンジイミンの合成を達成した(図1D)。本手法は広範な基質一般性をもち、MSH、チオエーテルの使用を回避できる。

図1. (A) 含硫黄生物活性物質 (B) Haake らによる合成法 (C) Bolm らによる合成法 (D) 今回の合成法

 

Modular Sulfondiimine Synthesis Using a Stable Sulfonylamine Reagent

Zhang, Z.; Davis, T. Q.; Willis, M. C. J. Am. Chem. Soc. 2019, 141, 13022–13027

DOI:10.1021/jacs.9b06831

論文著者の紹介

研究者:Michael C. Willis

研究者の経歴:

-1992 BSc, Imperial College of London
1992-1995 Ph.D, University of Cambridge, UK (Prof. Steven Lay)
1995-1997 Posdoc, Harvard University, USA (Prof. David Evans)
1997-2007 Lectureship in the Department of Chemistry, University of Bath, UK
2005-2010 EPSRC Advanced Research Fellow
2007-2013 Lectureship in the Department of Chemistry, Oxford University, UK
2013- Full Professor, Oxford University, UK
研究内容:二酸化硫黄の活性化、エナンチオ選択的触媒反応、触媒的複素環合成法、ロジウム触媒反応

論文の概要

本手法では、まずTMSOTf存在下スルフィニルアミンにグリニャール試薬を作用させ中間体1とした後、もう一種のグリニャール試薬を反応させることでスルフィルイミン2が生成する。次にロジウム触媒存在下でイミノヨージナンを作用させることでスルホンジイミン3が得られる(図2A)。本手法を用いることでメチルアリール体(3a3c)、ジアリール体(3d, 3e)のみならずジアルキル体(3f)が合成できた。ジアルキル化体が低収率の原因は、中間体のジアルキルスルフィルイミン2が不安定であるためである。また、Willsらはこのスルフィルイミン中間体2からスルホキシイミンの合成にも成功した。2に対しTPAP酸化を行うことでスルホキシイミン4を中程度の収率で得た。メチルアリール体(4a, 4b)、ジアリール体(4c4e)では対応するスルホキシイミンが高収率で得られた。ジアルキルスルホキシイミン(4f)も、中間体2の不安定性から収率は中程度にとどまっている(図2B)。

得られたスルホンジイミンの窒素原子上の化学修飾も可能である (図2C)。例えば、窒素上の保護基がNs基の場合、塩基性条件下臭化アリルを用いてアリル化した後、ドデカンチオール/DBU条件によりNs基を除去することでアリル化体5へと導ける。一方、保護基がt-Oct基では、還元的アミノ化によりp-ニトロベンジル化し、その後トリフルオロ酢酸を用いてt-Oct基を除去することで、ベンジル体6の合成に成功した。

図2.(A) 今回の反応 (B) 基質適用範囲 (B) 誘導化

以上、2種類のグリニャール試薬とスルフィニルアミンを用いたスルホンジイミンの合成が達成された。多様なスルホンジイミンの簡便合成法が今後創薬化学の加速につながることが期待される。

参考文献

  1. Feng, M. H.; Tang, B. Q.; Liang, S. H.; Jiang, X. F. Sulfur Containing Scaffolds in Drugs: Synthesis and Application in Medicinal Chemistry. Top. J. Med. Chem. 2016, 16, 1200–1216. DOI:10.2174/1568026615666150915111741
  2. Lücking, U. Neglected Sulfur(VI) Pharmacophores in Drug Discovery: Exploration of Novel Chemical Space by the Interplay of Drug Design and Method Development.Org. Chem. Front. 2019, 6, 1319–1324. DOI: 10.1039/c8qo01233d
  3. Haake, M. Ein Neues Verfahren zur Darstellung von S,S-D Tetrahedron Lett. 1970,11, 4449–4450. DOI: 10.1016/S0040-4039(01)83947-2
  4. Candy, M.; Guyon, C.; Mersmann, S.; Chen, J. R.; Bolm, C. Synthesis of Sulfondiimines by N-Chlorosuccinimide-Mediated Oxidative Imination of Sulfiliminium Salts. Angew. Chem., Int. Ed.2012, 51, 4440–4443. DOI: 10.1002/anie.201201296

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. ライトケミカル工業株式会社ってどんな会社?
  2. 超分子ポリマーを精密につくる
  3. アルケンでCatellani反応: 長年解決されなかった副反応を…
  4. CEMS Topical Meeting Online 超分子ポ…
  5. 有機反応を俯瞰する ーMannich 型縮合反応
  6. 科学を魅せるーサイエンスビジュアリゼーションー比留川治子さん
  7. スルホニルアミノ酸を含むペプチドフォルダマーの創製
  8. 化学クラスタ発・地震被害報告まとめ

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. これからの理系の転職について考えてみた
  2. アルゴン Argon 空気中の体積1%を占め、医療用レーザーにも使われる
  3. トロンボキサンA2 /Thromboxane A2
  4. 分取薄層クロマトグラフィー PTLC (Preparative Thin-Layer Chromatography)
  5. ヨウ化サマリウム(II) Samarium(II) Iodide SmI2
  6. 反応化学と生命科学の融合で新たなチャレンジへ【ケムステ×Hey!Laboインタビュー】
  7. 細胞が分子の3Dプリンターに?! -空気に触れるとファイバーとなるタンパク質を細胞内で合成-
  8. 櫻井英樹 Hideki Sakurai
  9. 切磋琢磨するアメリカの科学者たち―米国アカデミアと競争的資金の申請・審査の全貌
  10. 触媒的芳香族求核置換反応

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2019年10月
 123456
78910111213
14151617181920
21222324252627
28293031  

注目情報

注目情報

最新記事

国内最大級の研究者向けDeepTech Company Creation Program「BRAVE FRONTIER」 2022年度の受付開始 (7/15 〆切)

Beyond Next Ventures株式会社(本社:東京都中央区、代表取締役社⻑:伊藤毅、以下「…

イミンアニオン型Smiles転位によるオルトヒドロキシフェニルケチミン合成法の開発

第394回のスポットライトリサーチは、東京農工大学 大学院工学府 応用化学専攻 森研究室の神野 峻輝…

マテリアルズ・インフォマティクスで用いられる統計[超入門]-研究者が0から始めるデータの見方・考え方-

開催日:2022/07/06 申込みはこちら■開催概要近年、少子高齢化、働き手の不足の影…

表面酸化した銅ナノ粒子による低温焼結に成功~銀が主流のプリンテッドエレクトロニクスに、銅という選択肢を提示~

第393回のスポットライトリサーチは、北海道大学 大学院工学院 材料科学専攻 マテリアル設計講座 先…

高分子材料におけるマテリアルズ・インフォマティクスの活用とは?

 申込みはこちら■セミナー概要本動画は、20022年5月18日に開催されたセミナー「高分…

元素のふるさと図鑑

2022年も折り返しに差し掛かりました。2022年は皆さんにとってどんな年になり…

Q&A型ウェビナー カーボンニュートラル実現のためのマイクロ波プロセス 〜ケミカルリサイクル・乾燥・濃縮・焼成・剥離〜

<内容>本ウェビナーでは脱炭素化を実現するための手段として、マイクロ波プロセスをご紹介いたします…

カルボン酸、窒素をトスしてアミノ酸へ

カルボン酸誘導体の不斉アミノ化によりキラルα-アミノ酸の合成法が報告された。カルボン酸をヒドロキシル…

海洋シアノバクテリアから超強力な細胞増殖阻害物質を発見!

第 392回のスポットライトリサーチは、慶應義塾大学大学院 理工学研究科 博士後期課…

ポンコツ博士の海外奮闘録⑧〜博士,鍵反応を仕込む②〜

ポンコツシリーズ一覧国内編:1話・2話・3話国内外伝:1話・2話・留学TiPs海外編:1…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP