[スポンサーリンク]

化学者のつぶやき

2つのグリニャールからスルホンジイミンを作る

[スポンサーリンク]

グリニャール試薬とスルフィニルアミンを用いたスルホンジイミン合成が達成された。爆発性物質、臭気性物質を使用しない手法であり工業的な利用が期待される。

含硫黄生物活性物質の合成法

6価の硫黄を含む官能基は生物活性物質に顕著に見られ、スルホンアミドやスルホンは多くの農薬や医薬品に組み込まれている(1)

近年スルホンジイミン、スルホキシイミンもその化学特性が製薬業界に認識され始め、注目を集めている(図1A)(2)

スルホンジイミンの特徴は硫黄を中心に4つの置換基全てを変換できるという点にある。スルホンジイミンの合成は1970年にHaakeらによって達成された(図1B)(3)。この手法では、ジアルキルスルフィドを用いた際には中程度の収率で対応するスルホンジイミンが得られるものの、アルキルアリールスルフィド、ジアリールスルフィドを用いた際は低収率に留まる。

2012年にBolmらはチオエーテルからO-(メシチレンスルホニル)ヒドロキシルアミン(MSH)によって調製されるスルフィルイミンのクロロ化、続くイミノ化を用いたスルホンジイミン合成法を報告した(図1C)(4)。しかし、この手法はメチルアリールスルフィドでは対応するスルホンジイミンが中程度の収率で得られるものの、ジアリールスルフィドでは低収率であった。ジアルキルスルホンジイミンに関しては1例しか示されていない。さらに、悪臭をもつチオエーテルを基質として使用する点、爆発性があるMSHを用いる点などの、操作面での課題も残されていた。

今回Willis教授らは安定かつ扱いが容易なスルフィニルアミンを出発物質とする簡便なスルフィルイミン合成法および、スルフィルイミンの直接ジイミノ化法を開発することでスルホンジイミンの合成を達成した(図1D)。本手法は広範な基質一般性をもち、MSH、チオエーテルの使用を回避できる。

図1. (A) 含硫黄生物活性物質 (B) Haake らによる合成法 (C) Bolm らによる合成法 (D) 今回の合成法

 

Modular Sulfondiimine Synthesis Using a Stable Sulfonylamine Reagent

Zhang, Z.; Davis, T. Q.; Willis, M. C. J. Am. Chem. Soc. 2019, 141, 13022–13027

DOI:10.1021/jacs.9b06831

論文著者の紹介

研究者:Michael C. Willis

研究者の経歴:

-1992 BSc, Imperial College of London
1992-1995 Ph.D, University of Cambridge, UK (Prof. Steven Lay)
1995-1997 Posdoc, Harvard University, USA (Prof. David Evans)
1997-2007 Lectureship in the Department of Chemistry, University of Bath, UK
2005-2010 EPSRC Advanced Research Fellow
2007-2013 Lectureship in the Department of Chemistry, Oxford University, UK
2013- Full Professor, Oxford University, UK
研究内容:二酸化硫黄の活性化、エナンチオ選択的触媒反応、触媒的複素環合成法、ロジウム触媒反応

論文の概要

本手法では、まずTMSOTf存在下スルフィニルアミンにグリニャール試薬を作用させ中間体1とした後、もう一種のグリニャール試薬を反応させることでスルフィルイミン2が生成する。次にロジウム触媒存在下でイミノヨージナンを作用させることでスルホンジイミン3が得られる(図2A)。本手法を用いることでメチルアリール体(3a3c)、ジアリール体(3d, 3e)のみならずジアルキル体(3f)が合成できた。ジアルキル化体が低収率の原因は、中間体のジアルキルスルフィルイミン2が不安定であるためである。また、Willsらはこのスルフィルイミン中間体2からスルホキシイミンの合成にも成功した。2に対しTPAP酸化を行うことでスルホキシイミン4を中程度の収率で得た。メチルアリール体(4a, 4b)、ジアリール体(4c4e)では対応するスルホキシイミンが高収率で得られた。ジアルキルスルホキシイミン(4f)も、中間体2の不安定性から収率は中程度にとどまっている(図2B)。

得られたスルホンジイミンの窒素原子上の化学修飾も可能である (図2C)。例えば、窒素上の保護基がNs基の場合、塩基性条件下臭化アリルを用いてアリル化した後、ドデカンチオール/DBU条件によりNs基を除去することでアリル化体5へと導ける。一方、保護基がt-Oct基では、還元的アミノ化によりp-ニトロベンジル化し、その後トリフルオロ酢酸を用いてt-Oct基を除去することで、ベンジル体6の合成に成功した。

図2.(A) 今回の反応 (B) 基質適用範囲 (B) 誘導化

以上、2種類のグリニャール試薬とスルフィニルアミンを用いたスルホンジイミンの合成が達成された。多様なスルホンジイミンの簡便合成法が今後創薬化学の加速につながることが期待される。

参考文献

  1. Feng, M. H.; Tang, B. Q.; Liang, S. H.; Jiang, X. F. Sulfur Containing Scaffolds in Drugs: Synthesis and Application in Medicinal Chemistry. Top. J. Med. Chem. 2016, 16, 1200–1216. DOI:10.2174/1568026615666150915111741
  2. Lücking, U. Neglected Sulfur(VI) Pharmacophores in Drug Discovery: Exploration of Novel Chemical Space by the Interplay of Drug Design and Method Development.Org. Chem. Front. 2019, 6, 1319–1324. DOI: 10.1039/c8qo01233d
  3. Haake, M. Ein Neues Verfahren zur Darstellung von S,S-D Tetrahedron Lett. 1970,11, 4449–4450. DOI: 10.1016/S0040-4039(01)83947-2
  4. Candy, M.; Guyon, C.; Mersmann, S.; Chen, J. R.; Bolm, C. Synthesis of Sulfondiimines by N-Chlorosuccinimide-Mediated Oxidative Imination of Sulfiliminium Salts. Angew. Chem., Int. Ed.2012, 51, 4440–4443. DOI: 10.1002/anie.201201296

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 未解明のテルペン類の生合成経路を理論的に明らかに
  2. ボリルメタン~メタンの触媒的ホウ素化反応
  3. 尿から薬?! ~意外な由来の医薬品~ その2
  4. (-)-Calycanthine, (+)-Chimonanth…
  5. 試薬の構造式検索 ~便利な機能と使い方~
  6. 電気化学的HFIPエーテル形成を経る脱水素クロスカップリング反応…
  7. Whitesides’ Group: Writing…
  8. 2012年Wolf化学賞はナノケミストリーのLieber博士,A…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. ガッターマン アルデヒド合成 Gattermann Aldehyde Synthesis
  2. 交互に配列制御された高分子合成法の開発と機能開拓
  3. マラプラード グリコール酸化開裂 Malaprade Glycol Oxidative Cleavage
  4. シャンパンの泡、脱気の泡
  5. アレノフィルを用いるアレーンオキシドとオキセピンの合成
  6. 偽造ウイスキーをボトルに入れたまま判別する手法が開発される
  7. ポンコツ博士の海外奮闘録 〜留学サバイバルTips〜
  8. 齊藤 尚平 Shohei Saito
  9. リン酸アルミニウムを飲んだら爆発?
  10. 創薬人育成サマースクール2019(関東地区) ~くすりを創る研究の醍醐味を知る!~

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2019年10月
 123456
78910111213
14151617181920
21222324252627
28293031  

注目情報

最新記事

ケムステSlackが開設5周年を迎えました!

日本初の化学専用オープンコミュニティとして発足した「ケムステSlack」が、めで…

人事・DX推進のご担当者の方へ〜研究開発でDXを進めるには

開催日:2024/07/24 申込みはこちら■開催概要新たな技術が生まれ続けるVUCAな…

酵素を照らす新たな光!アミノ酸の酸化的クロスカップリング

酵素と可視光レドックス触媒を協働させる、アミノ酸の酸化的クロスカップリング反応が開発された。多様な非…

二元貴金属酸化物触媒によるC–H活性化: 分子状酸素を酸化剤とするアレーンとカルボン酸の酸化的カップリング

第620回のスポットライトリサーチは、横浜国立大学大学院工学研究院(本倉研究室)の長谷川 慎吾 助教…

高分子材料におけるマテリアルズ・インフォマティクスの活用:高分子シミュレーションの応用

開催日:2024/07/17 申込みはこちら■開催概要近年、少子高齢化、働き手の不足の影…

そうだ、アルミニウムを丸裸にしてみようじゃないか

N-ヘテロ環ボリロキシ配位子を用いることで、アニオン性かつ非環式、さらには“裸“という極めて不安定な…

カルベンがアシストする芳香環の開環反応

カルベンがアシストする芳香環の開環反応が報告された。カルベンとアジドによる環形成でナイトレンインダゾ…

有機合成化学協会誌2024年7月号:イミン類縁体・縮環アズレン・C–O結合ホモリシス・ハロカルビン・触媒的バイオマス分解

有機合成化学協会が発行する有機合成化学協会誌、2024年7月号がオンライン公開されています。…

分子研「第139回分子科学フォーラム」に参加してみた

bergです。この度は2024年7月3日(水)にオンラインにて開催された、自然科学研究機構 分子科学…

光の色で反応性が変わる”波長選択的”な有機光触媒

照射する可視光の波長によって異なる反応性を示す、新規可視光レドックス触媒反応が開発された。赤色光照射…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP