[スポンサーリンク]

化学者のつぶやき

未踏の構造に魅せられて―ゲルセモキソニンの全合成

[スポンサーリンク]

 

Total Synthesis of Gelsemoxonine
Shimokawa, J.; Harada, T.; Yokoshima, S.; Fukuyama, T. J. Am. Chem. Soc. 2011, ASAP.  DOI: 10.1021/ja208617c

ゲルセモキソニンという天然物は、上に示す構造をしているアルカロイドです。ご覧のとおり、「ひと目でわかる構造のユニークさ」こそが、他と一線を画する特徴です。
現段階では別段重要な生物活性があるわけでも無く、いってしまえば何の薬(ヤク)にも立たない化合物。*しかし、「こんなヘンテコな形の化合物、一体どうやったら作れるのだろう?」という問題は、古くから合成化学者たちの素直な遊び心を刺激し続けてやまないものです。科学技術が発達した現代でも、それは変わるところを知りません。
未踏の課題に挑戦し、それを独創的発想で解決していく取り組みは、たとえ興味本位であったとしても先端的頭脳の凄みが十二分に感じられます。
このたび東京大学の福山・下川らによって達成されたゲルセモキソニンの全合成は、まさにそんな研究成果の一つといえるでしょう。

*生物活性を調べるアッセイ系は様々ですので今後面白い◯◯活性が発見される可能性は大いにあります。

以下、この合成の3つの鍵反応に注目して紹介していきます。

彼らはまず、ジビニルシクロプロパン-シクロヘプタジエン転位反応を最初の鍵反応として用い、ゲルセモキソニンの持っているオキサビシクロ[3.2.2]骨格を構築しています。以前に達成されている類縁化合物ゲルセミンの全合成[1]での知見が活かされた形になります。

彼らはフルフリルアルコールから10 段階にて不斉合成される化合物A をシリルエノールエーテルへと変換し、転位前駆体としています。これを加熱したところ、カッコ内に示したような遷移状態B  を経て転位反応が速やかに進行します。転位成績体のシリルエノールエーテル部位はワンポットで脱シリル化し、オキサビシクロ[3.2.2]骨格をもつ化合物C を立体選択的に得ています。

gelsemoxonine_2.gif

ジビニルシクロプロパンのオレフィン部位が持っている幾何異性の制御から、生成物のビシクロ骨格がもつ立体化学が完全に制御されている点がポイントです。一般的に困難な「4 級不斉中心の構築」という問題を二重結合の幾何異性制御へと置き換えることで、複雑な骨格の立体選択的な構築が実現できます。これこそが転位反応を用いる合成戦略の強みでしょう。

次の見所は窒素官能基の導入です。彼らはこの課題をレドックス異性化反応を用いることによって解決しています。C  から二段階で合成できる不飽和アルデヒドからTMS シアノヒドリンが生成した後、DBU の塩基性にて不飽和ニトリルへの異性化が進行します。アリルアルコールを加えると、面選択的なプロトン化によってアシルシアニドへと変換された後にアリルエステルが生成するという一連の反応になっています。

こうしたレドックス異性化反応としては N-ヘテロサイクリックカルベン(NHC)を用いた触媒的な反応がよく知られていますが、これらの先駆けとなったシアニドを用いる反応[2]を、複雑な基質へと適用しています。酸化還元を必要としない条件なのでケトンを保護する必要がなく、注目に値する変換だと思います。こうして得られたエステルを、クルチウス転位を含む4 段階でD へと変換し、窒素官能基の導入に成功しています。

gelsemoxonine_3.gif

さて最後の見所は、窒素四員環(アゼチジン)をつくる工程。D から7 段階の変換を経て得られるエポキシドE にアミノ基が分子内攻撃すれば天然物に至るはずですが、トルエン中で加熱、あるいはそこにルイス酸などを添加するなどの条件下では、環化が全く進行しなかったそうです。この問題はなんとエタノール中で加熱するだけで解決されました。おそらくは水素結合ネットワークを介するメカニズムで促進されているのでしょう。

gelsemoxonine_4.gif

この合成ルートは非常に効率が良く、最終生成物がこれほど複雑かつ奇妙な形であるにも関わらず、なんと300 mg スケールで合成することも可能なのだそうです。

  • 全合成を達成して・・・

今回は、様々な苦労があった全合成を足掛け5年で見事達成された、下川淳先生ご本人から特別にコメントをいただくことができました。この場を借りて紹介したいと思います。若い化学者(の卵)たちにとって有益なメッセージとなってくれれば幸いに思います。

 ゲルセモキソニンの合成において最も苦労したのは、レドックス反応を見出すまでの長い検討でした。当初はアリルアルコール部位のヒドロキシメチル基を持たない基質を使って、長いこと検討を行なっていたのですが、この際にはビシクロ環上の二重結合はどんな試薬を使っても全く反応しませんでした。
ここで、「二重結合に窒素官能基を直接導入することができないならば、様々な反応の基質になりうるアリルアルコールの構造を持たせることで、何らかの変換の足がかりにできないだろうか」と考えたことがブレークスルーにつながりました。しっかりと問題を見極めて、その解決をあきらめずに考えていればいつかは報われるものだ、ということをあらためて学びました。

このプロジェクトは当初、私が博士課程に入った時に開始したものでした。それから2回の「ふりだしに戻る」を経て、5 年強の時間をかけた末に3つ目の合成戦略で初めて全合成をすることができました。自分が進むべき方向へ進んでいる確信があるときには何としてもあきらめないという強靭な意思と、もしかしたらさらに効率的な方法があるのではないかと常に考え続ける柔軟な感覚を併せ持っていれば、道がひらけることもあると思います。これを読んでいる学生の皆さんには、そんなことをぜひ心に隅にでも留めおきつつさらに研究に邁進して欲しいと思います。

― 下川淳

  • 関連論文
[1] (a) Fukuyama, T.; Liu, G. J. Am. Chem. Soc. 1996, 118, 7426.  DOI:10.1021/ja961701s  (b) Yokoshima, S.; Tokuyama, H.; Fukuyama, T. Angew. Chem. Int. Ed. 2000, 39, 4073. [abstract]
[2] Kawabata, H.; Hayashi, M. Tetrahedron Lett. 2002, 43, 5645. doi:10.1016/S0040-4039(02)01133-4

Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 接着系材料におけるマテリアルズ・インフォマティクスの活用 -条件…
  2. 電子1個の精度で触媒ナノ粒子の電荷量を計測
  3. Skype英会話の勧め
  4. 高専の化学科ってどんなところ? -その 1-
  5. 今度こそ目指せ!フェロモンでリア充生活
  6. 目指せ!フェロモンでリア充生活
  7. 未来切り拓くゼロ次元物質量子ドット
  8. 留学せずに英語をマスターできるかやってみた(1年目)

注目情報

ピックアップ記事

  1. マレーシア警察:神経剤VX検出で、正男氏は化学兵器による毒殺と判定
  2. 赤色発光する希土類錯体で植物成長促進の実証に成功
  3. 第52回「薬として働く人工核酸を有機化学的に創製する」和田 猛教授
  4. 有機化学美術館へようこそ ~分子の世界の造形とドラマ
  5. スローン賞って知っていますか?
  6. 液体ガラスのフシギ
  7. ピレスロイド系殺虫剤のはなし~追加トピック~
  8. 1日1本の「ニンジン」でガン予防!?――ニンジンの効能が見直される
  9. 蓄電池 Rechargeable Battery
  10. Gaussian Input File データベース

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2011年10月
 12
3456789
10111213141516
17181920212223
24252627282930
31  

注目情報

最新記事

アクリルアミド類のanti-Michael型付加反応の開発ーPd触媒による反応中間体の安定性が鍵―

第622回のスポットライトリサーチは、東京理科大学大学院理学研究科(松田研究室)修士2年の茂呂 諒太…

エントロピーを表す記号はなぜSなのか

Tshozoです。エントロピーの後日談が8年経っても一向に進んでないのは私が熱力学に向いてないことの…

AI解析プラットフォーム Multi-Sigmaとは?

Multi-Sigmaは少ないデータからAIによる予測、要因分析、最適化まで解析可能なプラットフォー…

【11/20~22】第41回メディシナルケミストリーシンポジウム@京都

概要メディシナルケミストリーシンポジウムは、日本の創薬力の向上或いは関連研究分野…

有機電解合成のはなし ~アンモニア常温常圧合成のキー技術~

(出典:燃料アンモニアサプライチェーンの構築 | NEDO グリーンイノベーション基金)Ts…

光触媒でエステルを多電子還元する

第621回のスポットライトリサーチは、分子科学研究所 生命・錯体分子科学研究領域(魚住グループ)にて…

ケムステSlackが開設5周年を迎えました!

日本初の化学専用オープンコミュニティとして発足した「ケムステSlack」が、めで…

人事・DX推進のご担当者の方へ〜研究開発でDXを進めるには

開催日:2024/07/24 申込みはこちら■開催概要新たな技術が生まれ続けるVUCAな…

酵素を照らす新たな光!アミノ酸の酸化的クロスカップリング

酵素と可視光レドックス触媒を協働させる、アミノ酸の酸化的クロスカップリング反応が開発された。多様な非…

二元貴金属酸化物触媒によるC–H活性化: 分子状酸素を酸化剤とするアレーンとカルボン酸の酸化的カップリング

第620回のスポットライトリサーチは、横浜国立大学大学院工学研究院(本倉研究室)の長谷川 慎吾 助教…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP