[スポンサーリンク]

一般的な話題

ニトリル手袋は有機溶媒に弱い?

[スポンサーリンク]

化学実験の際に一般的に着用されるニトリル製手袋は、有機溶媒を貫通させます。そのため、手袋を着用した手に有機溶媒がかかったときは、ただちに手袋を外して手を洗浄し、新しい手袋を着用することが望ましいです。

はじめに

みなさん、実験する際の保護手袋は何を使用していますか。多くの化学系の実験室では、使い捨てのニトリル製手袋が利用されていると思います。では、そのニトリル製手袋の耐薬品性はご存知でしょうか。この記事では、実験手袋の対薬品性についてお話ししようと思います。

実験手袋の分解性と透過性

以下の表は、 VWR 社が、自社の保護手袋の耐薬品性を調査した結果を一部抜粋したものです (リンク: Hand Protection Chemical Resistance Guide)。

保護手袋の対薬品性の比較. バイトンは, 芳香族やハロゲン系溶媒耐性に優れるとされています. ブチルゴムは, グローブボックスの手袋に利用される素材で, ガスや蒸気に対しても高い対浸透性を示します.
分解は手袋の強度の低下や膨潤のような変化を指します. ここで, 二重丸は, 溶媒によって手袋がほとんど変化しない, あるいは全く変化せず, 長時間手袋を溶媒に晒しても問題ないことを意味します. 一重丸は, わずかに変質するものの, 短時間ならばほとんど変化がないことを意味します. 三角は, 手袋が中程度に変質することを指します. 短時間の接触ならば手袋を使用し続けることができますが, 長時間の接触には注意が必要になります. バツは, 短時間の接触であっても, 手袋を破壊しうることを意味します. 

貫通時間は, 手袋がはじめに液体に接触してから, 液体の透過速度が 0.1 mg/m2 に達するまでの時間を指します.
I/D はデータが十分にないこと (insufficient data) を意味します.

VWR は、上述のデータをもとに、それぞれの溶媒に対する手袋の適性を三種に分類しています。緑色は、手袋を完全に溶媒に浸しても問題ないとされる組み合わせです。黄色は、事故によって短時間溶媒が手袋にかかった場合や短時間の接触の場合に、手袋が手を保護できるとされています。赤色は、短時間の接触でも手袋が変質するため、注意深く使用する必要があると提案しています。塗りつぶされていない箇所は、安全性を見積もるために十分なデータがないことを意味します。

ニトリル製手袋は有機溶媒に弱い!

上のデータを見ると、ニトリル製手袋は、酸性や塩基性の水溶液に対しては手を保護しますが、有機溶媒に対してはのきなみ耐性が低いことがわかります。例えば、アセトンは 5 分程度で手袋を貫通してしまい、さらに手袋を変質させます。一方で、THF では、貫通時間が 0 分と報告されており、ニトリル製手袋はほぼノーガードであると言えるでしょう。

無害な有機溶媒が手にかかっても無害?

ところで、アセトンなどの溶媒は、毒性がそれほど高くない溶媒として知られています3。それらの溶媒が保護手袋を貫通して手に接触しても問題ないと言えるでしょうか? 答えは No です。なぜなら、その溶媒が溶かしている化合物も、手袋を一緒に貫通するからです。したがって、もし毒性化合物を扱っていて、その溶液が手袋にかかったならば、ただちに実験手袋を外して手を洗浄することが推奨されます。

化学薬品の毒性は実験前に調べましょう

下の表は、さまざまな有機溶媒や金属塩の LD50 (マウス, 経口, mg/kg)をまとめたチャートで、時計の12時から反時計回りに毒性が高い化合物が列挙されています。この表を見ると、例えばアセトニトリルは、いくつかのスズ化合物と同程度に毒性が高いことなどがわかります。

LD50 は, 化合物を投与した際に被験体の 50% が死亡する量で、値が小さいほど毒性が高いです. 注意: LD50 の値は, 投与する方法によっても代わるため, 経口投与での毒性と, 皮膚からの浸透による毒性を直接関連づけることはできません. また、LD50 は死んだ個体数のみに注目しています。LD50 には死亡以外の異常が評価されていないため、LD50 が高いからと言って, 必ずしも無害とは限りません. そのため LD50 は「毒性のおおよその目安程度」として認識するのがよいと思われます. (上図は文献 2 から抜粋, 下表は文献 2 をもとに作成)

上の図には、私たちが想像する “毒性の一般的な知識” に反する事実をいくつか示しています。例えば「スズは毒性が高い」というイメージを持っている方が多いかもしれませんが、実際には、スズ化合物であっても「わずかに有毒」に留まるものもあります。そして、スズ以外の金属についても視点を移すと、塩化ニッケルや塩化亜鉛が「適度に高い毒性」を持つことが示されています。他に「適度に高い毒性」に含まれる物質には、重金属である塩化カドミウムや塩化パラジウムがあります。すなわち、第一遷移金属であっても重金属と同程度の毒性を示すものもあるのです。化合物の毒性について、「重金属は毒性が高い、第一遷移金属は毒性がやや低い」といった印象を持っている人が多いかもしれませんが、実際には化合物の毒性について一般化することは難しく、扱っている化合物について個々に毒性を調べることが理想です。同じ金属であっても、酸化状態や配位子の種類によって毒性が異なることがあります2

このような金属の毒性は、有機溶媒に溶ける有機金属錯体を扱う合成化学者は特に気に留めておくべきことでしょう。

薬品耐性が低いニトリル製手袋はそもそも無意味?

有機溶媒が実験手袋を貫通してしまうのならば、有機化学実験において実験手袋をつけることはそもそも無意味なのでしょうか?その答えは No です。溶媒が手袋を貫通してしまうと言っても、貫通するまでにはいくらかの猶予があります。薬品がかかってから直ちに手袋を外せば、皮膚に直接薬品が接触するよりも被害を防ぐことができます。実験手袋はつけましょう。

おわりに

筆者自身、手袋の対薬品性について知ったのはつい最近のことでした。恥ずかしながら、それまでは節約のために、使用済みの手袋を何度か着用して実験をすることもありました。しかし、実験手袋の対薬品性について学んだ今では、実験手袋の扱いについて改めようと思いました。

化学者にとって毒性の化合物を扱うことは避けることができない場合もあります。重要なのは、むやみやたらに毒性化合物を避けることではなく、毒性について正しい知識を身につけた上で、安全に毒性化合物を扱うことです。これを機にみなさんも自分の扱う化合物の毒性や安全性についてもう一度見直してみてはいかがでしょうか。

参考文献

  1. VWR Hand Protection Chemical Resistance Guide
  2. Egorova, K. S.; Ananikov, V. P. Toxicity of Metal Compounds: Knowledge and Myths. Organometallics 2017, 36, 4071–4090. DOI: 10.1021/acs.organomet.7b00605.
  3. Solvent exposure chart, https://chemtips.wordpress.com/2013/03/07/solvent-exposure-chart/

関連記事

関連書籍

やぶ

やぶ

投稿者の記事一覧

PhD候補生として固体材料を研究しています。学部レベルの基礎知識の解説から、最先端の論文の解説まで幅広く頑張ります。高専出身。

関連記事

  1. Dead Endを回避せよ!「全合成・極限からの一手」⑥
  2. 学術論文を書くときは句動詞に注意
  3. 光有機触媒で開環メタセシス重合
  4. SNS予想で盛り上がれ!2020年ノーベル化学賞は誰の手に?
  5. NCL用ペプチド合成を簡便化する「MEGAリンカー法」
  6. 目指せ!フェロモンでリア充生活
  7. 有機ルイス酸触媒で不斉向山–マイケル反応
  8. 化学構造式描画のスタンダードを学ぼう!【基本編】

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. ワールドクラスの日本人化学者が語る研究物語―『化学者たちの感動の瞬間』
  2. タクミナ「スムーズフローポンプQ」の無料モニターキャンペーン
  3. 1-フルオロ-2,4,6-トリメチルピリジニウムトリフルオロメタンスルホナート : 1-Fluoro-2,4,6-trimethylpyridinium Trifluoromethanesulfonate
  4. シュテルン-フォルマー式 Stern-Volmer equation
  5. ReadCubeを使い倒す(1)~論文閲覧プロセスを全て完結させる~
  6. 顕微鏡で有機化合物のカタチを決める!
  7. 生体分子を活用した新しい人工光合成材料の開発
  8. DNAナノ構造体が誘起・制御する液-液相分離
  9. 新たな特殊ペプチド合成を切り拓く「コドンボックスの人工分割」
  10. ロピニロールのメディシナルケミストリー -iPS創薬でALS治療に光明-

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2021年6月
« 5月   7月 »
 123456
78910111213
14151617181920
21222324252627
282930  

注目情報

注目情報

最新記事

NIMS WEEK2021-材料研究の最新成果発表週間- 事前登録スタート

時代を先取りした新材料を発信し続けるNIMS。その最新成果を一挙ご紹介する、年に一度の大イベント「N…

元素記号に例えるなら何タイプ? 高校生向け「起業家タイプ診断」

今回は化学の本質とは少し離れますが、元素をモチーフにしたあるコンテンツをご紹介します。実験の合間…

多価不飽和脂肪酸による光合成の不活性化メカニズムの解明:脂肪酸を活用した光合成活性の制御技術開発の可能性

第346回のスポットライトリサーチは、東京大学 大学院総合文化研究科(和田・神保研究…

10手で陥落!(+)-pepluanol Aの全合成

高度な縮環構造をもつ複雑天然物ペプラノールAの全合成が、わずか10工程で達成された。Diels–Al…

吉野彰氏が2021年10月度「私の履歴書」を連載。

今年の10月はノーベル化学賞が有機化学分野から出て、物理学賞を真鍋淑郎先生が受賞して、非常に盛り上が…

ガラス工房にお邪魔してみたー匠の技から試験管制作体験までー

実験器具を試して見たシリーズ第10弾! ついにシリーズ10回目を迎えました。今回は特別編です…

ダイセルよりサステナブルな素材に関する開発成果と包括的連携が発表される

株式会社ダイセルは、環境にやさしい酢酸セルロースを当社独自の技術で加工した真球状微粒子を開発し、20…

市販の化合物からナノグラフェンライブラリを構築 〜新反応によりナノグラフェンの多様性指向型合成が可能に〜

第345回のスポットライトリサーチは、北海道大学大学院理学研究院 理論化学研究室(前田・高橋研究室)…

PCに眠る未採択申請書を活用して、外部資金を狙う新たな手法

みなさんは毎年何本の研究申請書を書きますか?そして、残念ながら日の目を見ずに、アイデアのままパソコン…

フラーレン〜ケージを拡張、時々、内包〜

トリアジン誘導体とN-フェニルマレイミドを用いた、フラーレンのケージを拡張する新規手法が開発された。…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP