[スポンサーリンク]

一般的な話題

クロスカップリングはどうやって進行しているのか?

 

前回までに【速報】【お祭り編】【開拓者編】として、2010年のノーベル化学賞を解説してきました。

3日ほどたって熱狂も一段落してきつつありますので、学術ブログらしくもう少し詳しい、化学的なおはなしを取り上げてみましょう。

クロスカップリングを仲立ちする触媒としては、パラジウムという金属が有効だと述べました。

ではなぜパラジウムが良いのか?、そしてパラジウム触媒は、いったいどうやって炭素(ベンゼン環)同士をつなげているのか?―今回はそのあたりについてお話したいと思います。

触媒的クロスカップリング・そのメカニズム

 CC_mech_1

 速報でも述べましたが、クロスカップリングとはベンゼン環のような置換不活性な炭素(sp2炭素といいます)どうしをつなげることができる、極めて強力な化学反応です。プラスに帯電、マイナスに帯電した炭素源を使うことで、別種のものがくっつく「交差反応(Cross Reaction)」にできるのが特徴です。

クロスカップリング反応と呼ばれる化学反応には、鈴木ー宮浦カップリング根岸カップリングなどなど、多彩なバリエーションが存在しています(このバリエーションについては後日また紹介いたします)。
それぞれ細かい違いはあるのですが、実はどのバリエーションでもパラジウム触媒は、ほとんど同じやり方で、二つの炭素を仲立ちし、結びつけています。

具体的にパラジウム触媒がどう働いているか―模式図(触媒サイクル)を書いてみると、、以下のようになります。

CC_mech_2

キーポイントとなるのは以下の3つの化学素過程です。

① 酸化的付加 (oxidative addition)

CC_mech_3

クロスカップリングの開始過程です。電子を豊富に持った金属触媒が電子を与え(酸化され)つつ、炭素(C)-脱離基(X)結合を切ります(C-X結合の活性化)。結果的に金属触媒の酸化数は2増え、化合物との付加体を与えます。炭素には金属から電子が与えられるために、マイナス電荷を帯びるようになります。パラジウム触媒によるクロスカップリング反応の場合、0価の金属種に酸化的付加が起こる事で、二価(+2)の金属種が生成してくるのが常です。

 

② 金属交換 (transmetalation)

CC_mech_4

マイナス電荷を帯びた有機金属化合物は、酸化的付加後の触媒金属との間で、配位子交換を起こします。これにより、金属触媒上に二つの炭素基が乗った、右端のような中間体が生成します。金属-脱離基結合(M-X結合)が安定であればあるほど、また金属-炭素結合(M-C結合)の分極度が高いほど、この過程は有利に進む傾向があります。


③ 還元的脱離 (reductive elimination)

CC_mech_5

クロスカップリングの最終過程です。二つの炭素部分が触媒から離れ、炭素-炭素結合が生成されます。触媒金属が2つの炭素から電子を奪い(還元され)つつ、化合物が脱離していくプロセスなので、この名称がついています。パラジウム触媒によるクロスカップリング反応の場合、二価(+2)の金属がこのプロセスを経て0価に戻ったものが生成してきます。

 以上の組み合わせで、クロスカップリングの触媒サイクルは構成されています。

金属触媒それ自体はサイクル完結後、もとの形にもどります。すなわち反応を通じて変化はしません。このため、うまくデザインしてやれば、触媒を回収して何回も繰り返し使うことができます。

クロスカップリングでパラジウムが用いられる理由は、酸化数変化が柔軟、すなわち0価←→+2価の状態間を、比較的カンタンに行ったり来たりできる特性が必要だったからです。

このパラジウムは、あまりポピュラーではない少しばかり高価な金属です。しかしそれを補って余りあるメリットのあった反応ですし、 「高価な金属であっても、ほんの僅かな量(触媒量)を使用するだけで反応は進行する」という特徴がありました。これこそが実用観点から重要だったのは言うまでもありません。

以上、ここまでがクロスカップリング反応の概要です。大まかに総括すればわずかこれだけにまとめられてしまいます。しかし長きにわたる数多の研究者たちが地道な努力と貢献があってこそ、ここまで洗練された一般概念に到達したことは留意しておくべきです。事実、このメカニズムの基礎となるものは、【開拓者編】で述べたように、受賞対象外だった化学者たち(山本玉尾)の研究によって明らかにされたものです。

 さて、次回以降はクロスカップリング反応の夜明けから、その発展まで―もちろんノーベル化学賞受賞者も交えながら―クロスカップリング反応開発に貢献した、多数の化学者についてご紹介したいと思います。

関連書籍

The following two tabs change content below.
cosine

cosine

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。 関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。 素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. ルミノール誘導体を用いるチロシン選択的タンパク質修飾法
  2. 化学反応を起こせる?インタラクティブな元素周期表
  3. 研究者のためのCG作成術③(設定編)
  4. 超分子カプセル内包型発光性金属錯体の創製
  5. 糖鎖を直接連結し天然物をつくる
  6. 除虫菊に含まれる生理活性成分の生合成酵素を単離
  7. 紫外線に迅速応答するフォトクロミック分子
  8. PACIFICHEM2010に参加してきました!②

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 反応探索にDNAナノテクノロジーが挑む
  2. 化学で「透明人間」になれますか? 人類の夢をかなえる最新研究15
  3. 無限の可能性を秘めたポリマー
  4. 代表的有機半導体の単結晶化に成功 東北大グループ
  5. Pfizer JAK阻害薬tofacitinib承認勧告
  6. ケムステイブニングミキサー2015を終えて
  7. サレン-Mn錯体
  8. 新たなクリックケミストリーを拓く”SuFEx反応”
  9. オゾンホールのさらなる縮小を確認 – アメリカ海洋大気庁発表
  10. ヒドラジン

関連商品

注目情報

注目情報

最新記事

カクテルにインスパイアされた男性向け避妊法が開発される

男性の避妊法はXXドームを付ける一時的なものか、パイプカットを行って完全に生殖行為を不可能にするかと…

水素社会実現に向けた連続フロー合成法を新開発

第179回のスポットライトリサーチは、東京大学理学系研究科化学専攻有機合成化学教室の宮村浩之先生にお…

【大阪開催2月26日】 「化学系学生のための企業研究セミナー」

2020年卒業予定の学生の皆さんは、3月から就活本番を迎えますが、すでに企業の選考がスタートしている…

Nature 創刊150周年記念シンポジウム:ポスター発表 募集中!

本年、Nature 創刊150周年を迎えるそうです。150年といえば、明治時代が始まったばかり、北海…

アルケニルアミドに2つアリールを入れる

ニッケル触媒を用いたアルケニルアミドの1,2-ジアリール化反応が開発された。フマル酸エステルを配位子…

蛍光標識で定性的・定量的な解析を可能に:Dansyl-GSH

反応性代謝物の存在を調べたい。代謝化学の実験をしていれば、ほとんどの人がそう思うのではないでしょうか…

Chem-Station Twitter

PAGE TOP