[スポンサーリンク]

化学者のつぶやき

遷移金属を用いない脂肪族C-H結合のホウ素化

[スポンサーリンク]

 

 

N-Directed Aliphatic C–H Borylation Using Borenium Cation Equivalents

Prokofjevs, A.; Vedejs, E. J. Am. Chem. Soc. 2011, Early View. DOI: 10.1021/ja208093c

近年、“環境に優しい”ということがあらゆる分野で求められていますが、有機化学の分野でも非常に大きな流れになっています。そのような観点から、廃棄物をださない直接的な化合物の合成方法が求められています。そのような潮流のなかで、不活性なC-H結合の直接官能基化は、目的の化合物への直接的かつ革新的な合成経路を提供することができると考えられるため盛んに研究されています。

そのひとつとして、安定なC-H結合を直接C-B結合に変換する反応は、生成物のホウ素化合物が有用であることから重要であり、遷移金属触媒を用いた変換反応が報告されています。安定なC-H結合には大きく分けて芳香族C-H結合と脂肪族C-H結合がありますが、脂肪族C-H結合からC-B結合への変換反応は筆者には直感的に難易度が高く感じられ、例えばカリフォルニア大学のHartwigらによるアルカンの位置選択的ホウ素化が印象深いです[1]。

hatwig_lect_1

 

 

一方で最近では、レアメタルの高騰や産出地の偏在性を背景として、遷移金属触媒を用いた反応の代替反応の開発も盛んに行われています。今回、ミシガン大学のVedejsらは、窒素が配位した三配位ホウ素カチオン種(ボレニウム塩)を用いることで、遷移金属を用いずに脂肪族C-H結合をC-B結合に変換できることを報告しました。

アミノボラン1にTr[B(C6F5)4]を50 mol%混合すると、水素で架橋したホウ素カチオン中間体の2が生成し、さらにTr[B(C6F5)4]を加えることでメチル基のC-H結合がホウ素化された4が生成します。この反応は室温下、1時間以内で完了しています。4n-Bu4NBH4でクエンチすることによりアミノボラン5として単離されます。

2015-07-31_13-14-59

さらに、触媒量のTf2NHを用いても同様な反応が進行します。この時、溶媒の選択とTf2NHの当量が重要です。1当量のTf2NHを重トルエン中用いると共有結合の付加体6が生成します。この6は120 °Cにすると分解してしまい、目的のアミノボラン5は得られません。一方でTf2NHを触媒量(5 mol%)用いた場合、重トルエン中では6が観察され、重ジクロロメタン中では水素で架橋したホウ素カチオン中間体7が観察されます。さらに、トルエン中で温度を120 °Cにすると水素が発生し、目的のアミノボラン5が良好な収率で生成します。

本反応は、重ジクロロメタンを用いた時に7が観察されているのですが、その後の反応ではトルエンを用いる必要があります。この理由として芳香族溶媒中でビストリフリルアミドアニオンを有する中間体が安定であり、また溶解性高いことが考えられるようです。また本反応の特徴として通常ホウ素化が困難な四級炭素の隣の炭素でホウ素化が進行する点や、メチレンよりもメチル基で反応が進行しやすいなどが挙げられ非常に興味深いです。

2015-07-31_13-16-31

2015-07-31_13-16-31 

 

今回の報告では、ホウ素中心を十分電子不足にすれば、非常に反応性の低いメチル基でも反応が進行するということが示しされており、「馬を水際まで連れて行くことはできるが、水を飲ませることはできない」という諺に反して、「水際まで馬を連れてきて、喉を渇かせてやると水を飲ますことができる」ということを実践して見せてくれているように思いました。

2015-07-31_13-18-13

 

本反応では実際の活性種が未確定であるらしく、今後さらにホウ素元素のポテンシャルを引き出した魅力的な反応が報告されのではないかと期待しています。

関連文献

  1. Mkhalid, I. A. I.; Barnard, J. H.; Marder, T. B.; Murphy, J. M.; Hartwig, J. F. Chem. Rev. 2010, 110, 890. DOI: 10.1021/cr900206p

 

関連書籍

 

ナカシマ

ナカシマ

投稿者の記事一覧

化学と英語に関心があります。

関連記事

  1. インドールの触媒的不斉ヒドロホウ素化反応の開発
  2. 100年前のノーベル化学賞ーフリッツ・ハーバーー
  3. センチメートルサイズで均一の有機分子薄膜をつくる!”…
  4. アルミニウムで水素分子を活性化する
  5. スイスでポスドクはいかが?
  6. Dead Endを回避せよ!「全合成・極限からの一手」③
  7. 人と人との「結合」を「活性化」する
  8. アメリカで Ph. D. を取る –研究室に訪問するの巻–

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 硫酸エステルの合成 Synthesis of Organosulfate
  2. 禅問答のススメ ~非論理に向き合う~
  3. ロバート・グラブス Robert H. Grubbs
  4. 114番元素生成の追試に成功
  5. レーザー光で実現する新たな多結晶形成法
  6. メタボ薬開発に道、脂肪合成妨げる化合物発見 京大など
  7. ジャクリン・バートン Jacqueline K. Barton
  8. 【追悼企画】世のためになる有機合成化学ー松井正直教授
  9. サイエンスアゴラ2014総括
  10. ペプチド鎖が精密に編み込まれた球殻状ナノカプセル〜24交点の絡まりトポロジーをもつ[6]カテナン分子の合成〜

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

[書評]分子の薄膜化技術

概要スマートフォンや大型ディスプレイに搭載されている有機ELは、1980年代から世界中で熾烈…

【ジーシー】新卒採用情報(2022卒)

弊社の社是「施無畏」は、「相手の身になって行動する」といった意味があります。これを具現化することで存…

株式会社ジーシーってどんな会社?

株式会社ジーシーは歯科医療一筋に99年の歴史も持ち、歯科医療業界では国内NO.1のシェアを誇ります。…

ものづくりのコツ|第10回「有機合成実験テクニック」(リケラボコラボレーション)

理系の理想の働き方を考える研究所「リケラボ」とコラボレーションとして「有機合成実験テクニック」の特集…

第13回ケムステVシンポジウム「創薬化学最前線」を開催します!

第12回開催告知をお知らせしたばかりですが、第13回もあります!COVID-19の影響で、世…

Grignard反応剤が一人二役!? 〜有機硫黄化合物を用いるgem-ジフルオロアルケン類の新規合成法〜

第284回のスポットライトリサーチは、名古屋大学トランスフォーマティブ生命分子研究所・前川侑輝 博士…

第134回―「脳神経系の理解を進める分析化学」Jonathan Sweeder教授

第134回の海外化学者インタビューはジョナサン・スウィードラー教授です。イリノイ大学アーバナ・シャン…

第十二回ケムステVシンポ「水・有機材料・無機材料の最先端相転移現象 」

12月になりましたね。大好評のケムステシンポも今年は残りあと2回となりました。第12回となる…

Chem-Station Twitter

PAGE TOP