[スポンサーリンク]

化学者のつぶやき

遷移金属を用いない脂肪族C-H結合のホウ素化

[スポンサーリンク]

 

 

N-Directed Aliphatic C–H Borylation Using Borenium Cation Equivalents

Prokofjevs, A.; Vedejs, E. J. Am. Chem. Soc. 2011, Early View. DOI: 10.1021/ja208093c

近年、“環境に優しい”ということがあらゆる分野で求められていますが、有機化学の分野でも非常に大きな流れになっています。そのような観点から、廃棄物をださない直接的な化合物の合成方法が求められています。そのような潮流のなかで、不活性なC-H結合の直接官能基化は、目的の化合物への直接的かつ革新的な合成経路を提供することができると考えられるため盛んに研究されています。

そのひとつとして、安定なC-H結合を直接C-B結合に変換する反応は、生成物のホウ素化合物が有用であることから重要であり、遷移金属触媒を用いた変換反応が報告されています。安定なC-H結合には大きく分けて芳香族C-H結合と脂肪族C-H結合がありますが、脂肪族C-H結合からC-B結合への変換反応は筆者には直感的に難易度が高く感じられ、例えばカリフォルニア大学のHartwigらによるアルカンの位置選択的ホウ素化が印象深いです[1]。

hatwig_lect_1

 

 

一方で最近では、レアメタルの高騰や産出地の偏在性を背景として、遷移金属触媒を用いた反応の代替反応の開発も盛んに行われています。今回、ミシガン大学のVedejsらは、窒素が配位した三配位ホウ素カチオン種(ボレニウム塩)を用いることで、遷移金属を用いずに脂肪族C-H結合をC-B結合に変換できることを報告しました。

アミノボラン1にTr[B(C6F5)4]を50 mol%混合すると、水素で架橋したホウ素カチオン中間体の2が生成し、さらにTr[B(C6F5)4]を加えることでメチル基のC-H結合がホウ素化された4が生成します。この反応は室温下、1時間以内で完了しています。4n-Bu4NBH4でクエンチすることによりアミノボラン5として単離されます。

2015-07-31_13-14-59

さらに、触媒量のTf2NHを用いても同様な反応が進行します。この時、溶媒の選択とTf2NHの当量が重要です。1当量のTf2NHを重トルエン中用いると共有結合の付加体6が生成します。この6は120 °Cにすると分解してしまい、目的のアミノボラン5は得られません。一方でTf2NHを触媒量(5 mol%)用いた場合、重トルエン中では6が観察され、重ジクロロメタン中では水素で架橋したホウ素カチオン中間体7が観察されます。さらに、トルエン中で温度を120 °Cにすると水素が発生し、目的のアミノボラン5が良好な収率で生成します。

本反応は、重ジクロロメタンを用いた時に7が観察されているのですが、その後の反応ではトルエンを用いる必要があります。この理由として芳香族溶媒中でビストリフリルアミドアニオンを有する中間体が安定であり、また溶解性高いことが考えられるようです。また本反応の特徴として通常ホウ素化が困難な四級炭素の隣の炭素でホウ素化が進行する点や、メチレンよりもメチル基で反応が進行しやすいなどが挙げられ非常に興味深いです。

2015-07-31_13-16-31

2015-07-31_13-16-31 

 

今回の報告では、ホウ素中心を十分電子不足にすれば、非常に反応性の低いメチル基でも反応が進行するということが示しされており、「馬を水際まで連れて行くことはできるが、水を飲ませることはできない」という諺に反して、「水際まで馬を連れてきて、喉を渇かせてやると水を飲ますことができる」ということを実践して見せてくれているように思いました。

2015-07-31_13-18-13

 

本反応では実際の活性種が未確定であるらしく、今後さらにホウ素元素のポテンシャルを引き出した魅力的な反応が報告されのではないかと期待しています。

関連文献

  1. Mkhalid, I. A. I.; Barnard, J. H.; Marder, T. B.; Murphy, J. M.; Hartwig, J. F. Chem. Rev. 2010, 110, 890. DOI: 10.1021/cr900206p

 

関連書籍

[amazonjs asin=”4759810048″ locale=”JP” title=”典型元素の化学 (チュートリアル化学シリーズ)”][amazonjs asin=”148223310X” locale=”JP” title=”C-H Bond Activation in Organic Synthesis”][amazonjs asin=”4759813659″ locale=”JP” title=”不活性結合・不活性分子の活性化: 革新的な分子変換反応の開拓 (CSJカレントレビュー)”]

 

Avatar photo

ナカシマ

投稿者の記事一覧

化学と英語に関心があります。

関連記事

  1. 第九回ケムステVシンポジウム「サイコミ夏祭り」を開催します!
  2. 侯召民教授の講演を聴講してみた
  3. 未来のノーベル化学賞候補者
  4. 化学構造式描画のスタンダードを学ぼう!【基本編】
  5. 化学者のためのエレクトロニクス入門⑤ ~ディスプレイ分野などで活…
  6. 抽出精製型AJIPHASE法の開発
  7. アクリルアミド類のanti-Michael型付加反応の開発ーPd…
  8. 【いまさら聞けない?】アジドの取扱いを学んでおこう!

注目情報

ピックアップ記事

  1. マーデルング インドール合成 Madelung Indole Synthesis
  2. キャロライン・ベルトッツィ Carolyn R. Bertozzi
  3. 酵素触媒反応の生成速度を考える―ミカエリス・メンテン機構―
  4. 英グラクソスミスクライン、抗ウイルス薬を大幅値引きへ
  5. 水 (water, dihydrogen monoxide)
  6. トビン・マークス Tobin J. Marks
  7. 生命が居住できる星の条件
  8. ポンコツ博士の海外奮闘録⑤ 〜博士,アメ飯を食す。バーガー編〜
  9. 「化学物質の審査及び製造等の規制に関する法律施行令の一部を改正する政令」が閣議決定されました
  10. ソウル大教授Nature Materials論文捏造か?

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2011年12月
 1234
567891011
12131415161718
19202122232425
262728293031  

注目情報

最新記事

miHub®で叶える、研究開発現場でのデータ活用と人材育成のヒント

参加申し込みする開催概要多くの化学・素材メーカー様でMI導入が進む一…

医薬品容器・包装材市場について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、医…

X 線回折の基礎知識【原理 · 基礎知識編】

X 線回折 (X-ray diffraction) は、原子の配列に関する情報を得るために使われる分…

有機合成化学協会誌2026年1月号:エナミンの極性転換・2-メチル-6-ニトロ安息香酸無水物(MNBA)・細胞内有機化学反応・データ駆動型マルチパラメータスクリーニング・位置選択的重水素化法

有機合成化学協会が発行する有機合成化学協会誌、2026年1月号がオンラインで公開されています。…

偶然と観察と探求の成果:中毒解毒剤から窒素酸化物を窒素分子へ変換する分子へ!

第692回のスポットライトリサーチは、同志社大学大学院理工学研究科(小寺・北岸研究室)博士後期課程3…

嬉野温泉で論文執筆缶詰め旅行をしてみた【化学者が行く温泉巡りの旅】

論文を書かなきゃ!でもせっかくの休暇なのでお出かけしたい! そうだ!人里離れた温泉地で缶詰めして一気…

光の強さで分子集合を巧みに制御!様々な形を持つ非平衡超分子集合体の作り分けを実現

第691回のスポットライトリサーチは、千葉大学大学院 融合理工学府 分子集合体化学研究室(矢貝研究室…

化学系研究職の転職は難しいのか?求人動向と転職を成功させる考え方

化学系研究職の転職の難点は「専門性のニッチさ」と考えられることが多いですが、企業が求めるのは研究プロ…

\課題に対してマイクロ波を試してみたい方へ/オンライン個別相談会

プロセスの脱炭素化及び効率化のキーテクノロジーである”マイクロ波”について、今回は、適用を検討してみ…

四国化成ってどんな会社?

私たち四国化成ホールディングス株式会社は、企業理念「独創力」を掲げ、「有機合成技術」…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP