[スポンサーリンク]

化学者のつぶやき

振動結合:新しい化学結合

はじめに

皆さん「振動結合」という結合をご存知ですか?この結合の存在により、ある反応系において、その遷移状態の構造が安定化される可能性があることが報告されました。実は30年以上前に理論的可能性が報告されていた結合であり、最近、実験的な証明と量子化学計算によりこの結合が存在しうる理由が明らかにされたのです。

振動結合はこれまでに確立されている共有結合、イオン結合、水素結合、vdW結合と異なる新しい「結合」であり、教科書に新しい結合として掲載される日も近いと期待しています。

本寄稿では、振動結合の存在を証明した、国際共同研究の結果報告(2014年末のAngew Chem Int Ed)に基づき記述させていただきます[1]

 

まずは用語説明(Mu:ミュオニウム)

今回確認された反応は「Br+LBr」(L;水素の同位体)です。水素の同位体というとhydrogen (H) ,deuterium (D),tritium  (T)など通常思い浮かべるが、一連の系では、Mu(ミュオニウム)をHydrogenより軽い同位体として用いている(全部でMu, H, D, T, 4H の4種)。Muは化学ではあまり馴染みのなく、陽子・中性子・電子から成る”通常の”元素ではないもの。Mu(μ+e)は、レプトン系に属する素粒子であるミュー粒子(ミュオン:正電荷(μ+)と負電荷(μ))の中で、正に荷電したμ+に一個の電子が束縛されたものです。過去の実験結果よりIUPACは2001年にMuを水素の軽い同位体と扱うことを推奨しています[2]

この場合の同位体とは、核の電荷が同じであるが質量が異なるものと考えています。

*ミュー粒子は、電子の207倍の質量をもち、Hの1/9の質量であり、μ+の寿命はca.2μsと短いが、反応の時間スケールに比較して十分長い。

 

研究の歴史的背景[3]

さて、では今回の研究の歴史的背景から説明します。

1982 年、J.Manzらは2つの重い原子とそれらに挟まれた軽い原子で構成される分子系(H-L-H; heavey-light-heavy system)の遷移状態が、重い原子間を軽い原子が行き来する量子的振動により安定化される可能性を報告しました[4]

一方、1989年、Mu+X2の化学反応に関してアレニウスプロットをとると、X2にBr2を用いた時、反応温度の上昇とともに反応速度が遅くなる奇妙な現象が観測されました(図1)。これは、活性化エネルギーが負になることを示し、何らかの中間体がこの反応に潜んでいることが疑われました。

この実験に加わったD.G.Flening振動結合が関与していることを示唆しました[5]。この結果を受け、直接的な証拠を得ようとしましたが、残念ながら当時の技術では得られませんでした。しかし、測定機器(加速器、分析装置等)の進歩も伴い、2012年にD.G.Flemingによって再実験が行われ、ついにその確証を得ました[6]

そして昨年、2014年に 高柳(埼玉大)らは再実験した反応に関して量子化学計算を行い、Manz、Fleningらとともに共になぜこのような結合ができるかを明らかにしたのです。[1]

 

図1_ref5,fig2ref

図1, ref5.fig2 (R1■Mu+F2, R2: Mu+Cl2●,R3: Mu+Br2▲)

 

今回の報告[1]

高柳らはBr-L-Br (Lは水素同位体)系について高精度な量子化学計算を行いました。その結果、Lが水素原子より軽いMuの場合で、量子的な振動が激しくなることで遷移状態がBr+LBr解離極限に比べて安定になることがわかりました(図2)。

これは、量子的振動による化学結合が存在する可能性、すなわち同位体置換がこれまでと異なる化学現象を生み出す可能性があることを示唆しています。

 

図2_ACIE_fig2

図2 Br-Mu-Brの振動結合(下図の青い部分)ref1, fig.2

 

通常、化学結合の生成は、位置エネルギー(PE)の減少がゼロ点エネルギー(VZPE: vibrational zero point energy)の増加より大きいためおこります。量子力学では全ての粒子は波動性をもっているため、基底状態でも振動します(原子の不確定性原理により、絶対零度においても原子は一定の振動をしている)。これにより生じるエネルギーをVZPEといいます。これは逆に、少しの位置エネルギーの増加と十分なゼロ点エネルギーの減少が見られた場合、結合が生成する可能性を示唆します。彼らは、この事実を量子化学的に証明しました(図3)。

 

図3_ACIE_Fig4

図3、ref.1, fig.4

 

*図3では、Eが基底状態の変化、VがPEの変化、グレーに塗られた部分がVZPEである。

 

Q&A (メールでインタビュー)

私は理論化学に疎いため、不正確な記事を書く可能性があると思っています。異例ではありますが、疑問点をメールで高柳研究室に質問させていただきました。

大変稚拙な質問でありましたが、高柳先生ご本人から質問に対し丁寧な説明をいただきました。以下に、メール内容の一部を先生了承のもと掲載させていただきます。

 

Q1 同位体効果は、反応の様々な情報を得るため重要ですが、今回の結果が同位体効果に与える影響をどのように解釈すればよろしいのでしょうか。

高柳先生:. 普通、化学反応の遷移状態は反応物や生成物よりも(ポテンシャル)エネルギーが高い状態です。しかし、ミュオニウムのように極端に軽い原子が移動するような化学反応では、遷移状態に相当する分子構造を取り得るというのが大きなポイントです。これは、反応物や生成物では量子化されたゼロ点振動が極端に大きくなるのに対し、遷移状態でのゼロ点振動が逆に小さくなるためです。そのため、分子が自然と遷移状態付近の構造をとります。また、この現象は中心のミュオニ ウム原子が量子的に両端の原子を引き付けているので、振動結合と名づけられました。

 

Q2 本実験から、将来の化学分野にどのように貢献していくと予想されますか。(本知見を、実験化学者が利用するとしたら、どのようなことができるとお考えでしょうか。)

高柳先生: 同位体置換によって、起きる化学現象が全く異なることがあると思います。化学反応論では、ポテンシャルエネルギー曲面という概念を使います。安定な分子と いうのは、曲面上の安定な井戸に捕まっている状態ですし、遷移状態というのは不安定な鞍点です。しかし、多次元の量子効果は井戸に分子が必ず存在するとは 限らないことを示しています。

 

Q3 記事において、述べておきたい事、主張、解説等ございましたら、ご自由に記載下さい。

高柳先生: 特にございません。若い方に興味をもっていただけるだけでありがたいことです。

 

以上のような回答をいただきました。私はこの報告が、化学の最も基礎的な結合という概念に新たな一頁を加え、他の化学者に新しい結合への切り口を示しているように感じました。

今後も、振動結合の発展を見守りたいと思います。

 

謝辞

年会前のお忙しい時期に、突然で不躾なメールにも関わらず丁寧に回答いただき、高柳教授にあらためてお礼申し上げます。

 

参考文献

  1.  Fleming, D.G.; Manz, J.; Sato, K.; Takayanagi, T. Angew Chem, Int. Ed. 2014,  53, 13706-13709 DOI: 10.1002/anie.201408211
  2. Koppenol, W. H. Pure Appl. Chem. 2001, 73, 377-380. DOI: 10.1351/pac200173020377
  3. 量子的振動による化学結合-同位体置換による新しい分子結合の生成-」埼玉大学 広報 平成26年12月3日
  4. Manz, J.; Meyer, R.; Pollak, E.; Römelt, J. Chem.Phys.Let.1982, 93, 184-187. DOI: 10.1016/0009-2614(82)83689-0
  5. Gonzalez, A. C.; Reid, I. D.; Garner, D. M.;  Senba, M.; Fleming, D. G.;  Arseneau, D. J.;  Kempton, J. R.  J.Chem.Phys. 1989, 91, 6164-6175.
  6. Fleming, D. G.; Cottrell, S. P.; McKenzie, I.; Macrae, R. M. Phys.Chem.Chem.Phys.2012,14,10953-10966. DOI: 10.1039/C2CP41366C

 

The following two tabs change content below.
MasaN.

MasaN.

博士(工)。できる範囲で。

関連記事

  1. 階段状分子の作り方
  2. パラジウム触媒の力で二酸化炭素を固定する
  3. 投票!2013年ノーベル化学賞は誰の手に??
  4. 第37回反応と合成の進歩シンポジウムに参加してきました。
  5. 「オプトジェネティクス」はいかにして開発されたか
  6. 付設展示会に行こう!ー和光純薬編ー
  7. 有合化若手セミナーに行ってきました
  8. 「溶融炭酸塩基の脱プロトン化で有用物質をつくる」スタンフォード大…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 米ファイザー、今期業績予想を上方修正・1株利益1.68ドルに
  2. 第15回光学活性シンポジウム
  3. 人と人との「結合」を「活性化」する
  4. ジオトロピー転位 dyotropic rearrangement
  5. NHC銅錯体の塩基を使わない直接的合成
  6. 1,4-ジ(2-チエニル)-1,4-ブタンジオン:1,4-Di(2-thienyl)-1,4-butanedione
  7. タミフル―米国―厚労省 疑惑のトライアングル
  8. BASFとはどんな会社?-1
  9. 有機溶媒吸収し数百倍に 新素材のゲル、九大が開発
  10. 4,7-ジブロモ-2,1,3-ベンゾチアジアゾール:4,7-Dibromo-2,1,3-benzothiadiazole

関連商品

注目情報

注目情報

最新記事

リチウムイオン電池の課題のはなし-1

Tshozoです。以前リチウムイオン電池に関するトピックを2つほど紹介した(記事:リチウムイ…

アルコールをアルキル化剤に!ヘテロ芳香環のC-Hアルキル化

2015年、プリンストン大学・D. W. C. MacMillanらは、水素移動触媒(HAT)および…

三種類の分子が自発的に整列した構造をもつ超分子共重合ポリマーの開発

第123回のスポットライトリサーチは、テキサス大学オースティン校博士研究員(Jonathan L. …

超分子化学と機能性材料に関する国際シンポジウム2018

「超分子化学と機能性材料に関する国際シンポジウム2018」CEMS International Sy…

アメリカで Ph. D. を取る –研究室に訪問するの巻–

この連載は、米国の大学院で Ph.D. を取得することを目指す学生が日記感覚で近況を記録するためのも…

光触媒ラジカルカスケードが実現する網羅的天然物合成

四川大学のYong Qinらは、可視光レドックス触媒によって促進される窒素ラジカルカスケード反応によ…

Chem-Station Twitter

PAGE TOP