[スポンサーリンク]

化学者のつぶやき

タキサン類の全合成

[スポンサーリンク]

taxadienone.png

  最近Nature Chemistry誌に公開された、Baranらによるタキサン類の全合成について紹介したいと思います。

なんてもたもた記事を書いていたら、海外の化学系ブログB.R.S.M.さんに詳しい記事が!!(-_-;) なんだか二番煎じのようになってしまいましたが日本語バージョンということでお許しください。

 

''Scalable enantioselective total synthesis of taxanes''

Mendoza, A.; Ishihara, Y.; Baran, P. S. Nature Chemistry 2011, ASAP. DOI: 10.1038/nchem.1196

 

  Taxadienoneをはじめとするタキサンジテルペノイドはイチイ科植物から算出されるテルペノイドであり、現在までに350種類以上の類縁体が報告されているようです。中でもタキソールは、乳がん等に顕著な治療効果を示すことに加え、非常に複雑な構造であることも相まってこれまで多くの合成研究が展開されてきた化合物です。2011年現在までに6例の全合成が(R. A. Holton, K. C. Nicolaou, P. A. Wender, S. J. Danishefsky, T. Mukaiyama, I. Kuwajima)、1例の形式全合成が(T. Takahashi)報告されております。

 

  しかし、いずれの合成法でも非常に長いルートを余儀なくされており、全合成による大量供給は到底不可能な状況です。これは多くの酸素官能基が密集する8員環の構築というものが非常に難しく、保護基を付けたり付け替えたり、あるいは外したり酸化したり等々の工程が生じてしまうためでした。

 

生合成.png

  一方で生物はこの化合物をどのように作っているかといいますと、まずゲラニオールの2量体が環化することでTaxadieneを生成し、続いて酵素によるタキサン骨格の酸化によってタキソールを産出しています。このように生合成では化学的な全合成とは大きく異なっています。

  ではなぜ化学者はこのような合成法をとらないのか?といいますと、これまでC-H結合を狙った位置で、しかも立体選択的に酸化する方法はほとんど皆無であり、極めて難しいと考えられていたためです。しかし最近の不活性なC-H結合の酸化反応の発展に伴い、このような全合成も不可能ではなくなりつつあります。

  これに挑戦したのがPhil Baranです。Baranはテルペンの合成に際し、2段階に分けた合成法を提案しています。

すなわち

  1. 骨格の構築(cyclase phase)
  2. 炭素骨格の酸化(oxidaze phase)

というように、必要最小限の官能基を有する骨格を早い段階で構築し、後から酸化度を上げていくという生合成に似たコンセプトです。2009年にはこれに基づいたeudesmane類の合成を報告しています。(P. S. Baran et al., Nature, 2009, 459, 824-828. DOI: 10.1038/nature08043)

  このような戦略をとることで、あらゆる類縁体の合成が容易になりますし、酸素官能基の導入が後半となりますので保護基等の必要が少なくなり工程数も削減できるというわけです。

今回の論文は、タキサン類合成の「1.骨格の構築」にあたるTaxadienoneの不斉合成をわずか7工程、しかもグラムスケールで行ったというものです。

 

disconnection.png

 論文中には、彼らは様々なアプローチによる合成を試みたことが記されており、最終的にAB環を分子内Diels-Alder反応で構築するルートが最も効率的であったようです。

 

全体.png

  このように全体の合成スキームを眺めてみますと、そこまで変わった反応は用いられておりませんが、反応条件に苦労の跡が伺えます。(溶媒 H2O:EtOH:toluene = 1:10:4 など)

  特にアルドール反応はランタノイドのルイス酸以外では進行しなかったらしく、得られた環化前駆体もジアステレオ比が2:1と少し残念なことになっております。しかしこういったβ位が4級のエノラートのアルドール反応は往々にして選択性があまり発現しないので仕方ないかな、とも思います。このあたりの苦労話は論文中に1ページにもわたって書かれておりますので興味のある方はそちらをご覧下さい。

この合成によって最終的に1g以上のTaxadinenoneが合成できるようです。

 

future.png

  今後はタキソールの全合成に向けて酸化を行なっていくものと推測されます。これまでのタキソール等の全合成の知見からすると、C-1位とC-13位の酸化は可能だと思われます。

問題はC-10位の酸化とC-7位の酸化でしょう。この辺にどのような酸化条件を持ってくるのか非常に気になるところであります。続報に期待したいと思います。

87suke

87suke

投稿者の記事一覧

博士課程の学生。ひっそりと天然物合成をやってます。Chem-Stationを通じて皆さんと化学の面白さを共有し

関連記事

  1. 投票!2018年ノーベル化学賞は誰の手に!?
  2. アラインをパズルのピースのように繋げる!
  3. キノコから見いだされた新規生物活性物質「ヒトヨポディンA」
  4. 癸巳の年、世紀の大発見
  5. 2015年ケムステ人気記事ランキング
  6. 【書籍】アリエナイ化学実験の世界へ―『Mad Science―炎…
  7. 個性あるTOC その②
  8. 学会風景2001

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. ファヴォルスキー転位 Favorskii Rearrangement
  2. 第24回「アルキル-πエンジニアリングによる分子材料創成」中西尚志 博士
  3. 二丁拳銃をたずさえ帰ってきた魔弾の射手
  4. 水と塩とリチウム電池 ~リチウムイオン電池のはなし2にかえて~
  5. 脱水素型クロスカップリング重合法の開発
  6. 酵母菌に小さなソーラーパネル
  7. テトラセノマイシン類の全合成
  8. ヒドロアシル化界のドンによる巧妙なジアステレオ選択性制御
  9. ブラウザからの構造式検索で研究を加速しよう
  10. 第85回―「オープン・サイエンス潮流の推進」Cameron Neylon教授

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

第15回ケムステVシンポジウム「複合アニオン」を開催します!

第14回ケムステVシンポが2月3日に開催されますが、その二日後にもアツいケムステVシンポが開催されま…

不斉反応ーChemical Times特集より

関東化学が発行する化学情報誌「ケミカルタイムズ」。年4回発行のこの無料雑誌の紹介をしています。…

2021年化学企業トップの年頭所感を読み解く

2021年が本格始動し始めている中、化学企業のトップが年の初めに抱負や目標を述べる年頭所感を続々と発…

転職を成功させる「人たらし」から学ぶ3つのポイント

転職活動を始めた場合、まずは自身が希望する職種、勤務地、年収などの条件を元にインターネットで求人を検…

mRNAワクチン(メッセンジャーRNAワクチン)

病原体のタンパクをコードしたmRNAをベースとしたワクチン。従来のワクチンは、弱毒化・不活化した病原…

第139回―「超高速レーザを用いる光化学機構の解明」Greg Scholes教授

第139回の海外化学者インタビューはグレッグ・ショールズ教授です。トロント大学化学科(訳注:現在はプ…

分子の対称性が高いってどういうこと ?【化学者だって数学するっつーの!: 対称操作】

群論を学んでいない人でも「ある分子の対称性が高い」と直感的に言うことはできるかと思います。しかし分子…

非古典的カルボカチオンを手懐ける

キラルなブレンステッド酸触媒による非古典的カルボカチオンのエナンチオ選択的反応が開発された。低分子触…

Chem-Station Twitter

PAGE TOP