[スポンサーリンク]

化学者のつぶやき

当量と容器サイズでヒドロアミノアルキル化反応を制御する

Ti触媒による、ジメチルアミンを用いたアルケンのヒドロアミノアルキル化反応が報告された。反応容器のサイズによってモノヒドロアミノアルキル化とジヒドロアミノアルキル化を制御できる。

アルケンのヒドロアミノアルキル化

第4族・第5族遷移金属触媒によるアルケンのヒドロアミノアルキル化は近年目まぐるしい成長を遂げており、従来のアミンの工業的製法(コバルト or ロジウム触媒によるアルケンのヒドロホルミル化/還元的アミノ化)に取って代わることが実現可能になりつつある[1]。本手法は、アルケンを1工程でヒドロアミノアルキル化できるのみならず、Tiのような安価で毒性の低い触媒を用いる点で有効である。

アルケンのヒドロアミノアルキル化は1980年Masperoらによって初めて報告された(図1A)[2]

この反応は高温を必要とし、アルケンの適用範囲や収率に課題があったため、それ以後、ヒドロアミノアルキル化に関する研究はほとんど行われなかった。2007年、Hartwigらはアニリン誘導体をもちいることで、アルケンを高収率でヒドロアミノアルキル化することに成功した(図1B)[3]。これを皮切りに、同様の研究が盛んに行われ始めた。しかし、メチルアミンやジメチルアミンなどのガス状アミンを用いたヒドロアミノアルキル化は依然として少ない。

今回、オルデンブルグ大学のDoye教授らはEisenらによって報告されたTi触媒[4]を用いることで、アルケンのジメチルアミンとのモノヒドロアミノアルキル化とジヒドロアミノアルキル化の開発に成功した(図1C)[5]

図1. アルケンのヒドロアミノアルキル化

 

“Dimethylamine as a Substrate in Hydroaminoalkylation Reactions”

Bielefeld, J.; Doye, S. Angew. Chem., Int. Ed. 2017, 56, 15155. DOI: 10.1002/anie.201708959

論文著者の紹介

研究者:Sven Doye

研究者の経歴:

1991-1993 PhD University of Hannover (Prof. Dr. H. C. E. Winterfeldt)
1996-1997 Posdoc MIT (Prof. S. L. Buchwald)
1997-2001 Habilitation, University of Hannover
2000-2002 Assistant (C1), University of Hannover
2002-2003 Professor (C2), University of Hannover
2003-2006 Professor (C3), Ruprecht-Karls-University in Heidelberg
2006- Professor (W2), Carl von Ossietzky University in Oldenburg
研究内容: C-H結合活性化、チタン触媒によるヒドロアミノアルキル化、反応メカニズム、天然物合成

論文の概要

本反応の推定反応機構を図2Aに示す。本機構はDoyeらにより2011年に速度論に基づき推定された[6]。Ti触媒1がC–H活性化により生じるチタナアジリジン2と平衡状態にあり、2にオレフィンが挿入することで、チタナピロリジン3A/3Bを形成する。その後3とジメチルアミンが反応し、モノアルキルアミン4l/4bが得られる。このとき、3Aは配位子(L)と置換基(R)との立体障害により、3Bの生成が優先し、結果として分岐型アミン4bが主生成物となると考えられる。

また、本反応に関してはC–H活性化がメチレン基よりもメチル基で起こりやすいことから[7]、生成物のアルキルアミンがさらに反応したイソアルキルアミン67は生成しにくい。

本反応で興味深い点は、モノヒドロアミノアルキル化とジヒドロアミノアルキル化を制御することができるところだ。

5mLアンプルでジメチルアミンをアルケンに対して小過剰量加える(触媒のジメチルアミンを含む)ことで4bが主生成物として得られる(図2B)。その際、4bはもう一つメチル基を有しているため、それが反応したジアルキル化体5bbが副生成物として得られる。一方アミンの当量を半分程度に減らし、100mLシュレンクを用いることで系中のジメチルアミンが気化し、系中から排除されるため、4bが優先的に反応し5bbを主生成物として与える(図2C)。

いくつかの基質で収率と選択性に課題はあるものの、安価なTi触媒を用いたジメチルアミンによるアルケンのヒドロアミノアルキル化に成功した。今後は学術研究を超えて工業的製法などにも応用されていくことに期待したい。

図2. (A) 推定反応機構 (B) モノヒドロアミノアルキル化 (C) ジヒドロアミノアルキル化

参考文献

  1. Franke, R.; Selent, D.; Börner, A. Chem. Rev. 2012, 112, 5675. DOI: 10.1021/cr3001803
  2. Clerici, M. G.; Maspero, F. Synthesis 1980, 305. DOI: 1055/s-1980-29002
  3. Herzon, S. B.; Hartwig, J. F. J. Am. Chem. Soc. 2007, 129, 6690. DOI: 10.1021/ja0718366
  4. Elkin, T.; Kulkarni, N. V.; Tumanskii, B.; Botoshansky, M.; Shimon, L. J. W.; Eisen, M. S. Organometallics 2013, 32, 6337. DOI: 1021/om4006998
  5. 著者らは同様なTi触媒を用いたジメチルアミン以外の2級アミンによるアルケンのヒドロアミノアルキル化を報告している。Dörfler, J.; Preuß, T.; Brahms, C.; Scheuer, D.; Doye, S. Dalton Trans. 2015, 44, DOI: 10.1039/C4DT03916E
  6. Prochnow, I.; Zark, P.; Müller, T.; Doye, S. Angew. Chem., Int. Ed. 2011, 50, 6401. DOI: 10.1002/anie.201101239
  7. Herzon, S. B.; Hartwig, J. F. J. Am. Chem. Soc. 2008, 130, 14940. DOI: 10.1021/ja806367e
The following two tabs change content below.
山口 研究室
早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. どろどろ血液でもへっちゃら
  2. NIMSフォーラム 「未来のエネルギーをつむぐ新材料・新物質、こ…
  3. ケムステ新コンテンツ「化学地球儀」
  4. BASF150年の歩みー特製ヒストリーブックプレゼント!
  5. マルチディスプレイを活用していますか?
  6. カルボン酸だけを触媒的にエノラート化する
  7. ナノってなんナノ?~日本発の極小材料を集めてみました~
  8. 触媒的C-H活性化型ホウ素化反応

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. ノーベル賞化学者と語り合おう!「リンダウ・ノーベル賞受賞者会議」募集開始
  2. パテントクリフの打撃顕著に:2012製薬業績
  3. 抗アレルギー薬「アレジオン」の販売、BIに一本化
  4. “クモの糸”が「ザ・ノース・フェイス」のジャケットになった
  5. 「優れた研究テーマ」はどう選ぶべき?
  6. 第八回 ユニークな触媒で鏡像体をつくり分けるー林民生教授
  7. 研究活動の御用達!PDF加工のためのクラウドサービス
  8. 信越化学、塩化ビニル樹脂を値上げ
  9. バニリン /Vanillin
  10. 未来のノーベル化学賞候補者

関連商品

注目情報

注目情報

最新記事

投票!2018年ノーベル化学賞は誰の手に!?

今年も9月終盤にさしかかり、毎年恒例のノーベル賞シーズンがやって参りました!化学賞は日本時間…

ライトケミカル工業株式会社ってどんな会社?

ライトケミカル工業は自社製品を持たず、研究開発もしない、更に営業マンもいない独立資本の受託専門会社(…

クラリベイト・アナリティクスが「引用栄誉賞2018」を発表

9月20日、クラリベイト・アナリティクス社から2018年の引用栄誉賞が発表されました。本賞は…

AIで世界最高精度のNMR化学シフト予測を達成

理化学研究所(理研)環境資源科学研究センター環境代謝分析研究チームの菊地淳チームリーダー、伊藤研悟特…

イミニウム励起触媒系による炭素ラジカルの不斉1,4-付加

2017年、カタルーニャ化学研究所・Paolo Melchiorreらは、イミニウム有機触媒系を可視…

ケムステ版・ノーベル化学賞候補者リスト【2018年版】

各媒体からかき集めた情報を元に、「未来にノーベル化学賞の受賞確率がある化学者」をリストアップしていま…

PAGE TOP