[スポンサーリンク]

一般的な話題

DNAのもとは隕石とともに

[スポンサーリンク]

銀河に願いを

GREEN051.PNG

万物の霊長とされるヒトから、顕微鏡でなければ見ることのできない微生物まで、地球上の生命は、水素・炭素・窒素・酸素・リンの5元素からなるDNAと呼ばれる高分子に遺伝情報をゆだねています。このDNAのもとが、天空を裂いて地球に訪れた隕石から検出されたという話題について紹介します。 

機能美とも呼べる荘厳な二重らせんを作るDNAは、ヌクレオチドと呼ばれる構成単位が、遺伝情報にもとづいて並ぶことで作られます。ヌクレオチドは、リボースと呼ばれる五炭糖、リン酸、そして4種類のうちいずれかひとつの核酸塩基からなる物質です。DNAを構成する核酸塩基は、アデニン(A)・グアニン(G)・シトシン(C)・チミン(T)の4種類です。

化学構造を見てみると、グアニンとアデニンはプリンと呼ばれる有機化合物に似ており、シトシンとチミンはピリミジンと呼ばれる有機化合物に似ています。プリン塩基のグアニンとピリミジン塩基のシトシンが3の水素結合で、プリン塩基のアデニンとピリミジン塩基のチミンが2の水素結合でつながれることにより、2本のDNA鎖が結びつきます。

 

  • 核酸塩基の化学構造を見返してみよう

ところで、プリンやピリミジンに「似ている」とよく言われますが、高校生ぐらいのわたしは資料集を見て「あまり似ていないよ、ウソツキ」と思っていたものです。核酸塩基の化学構造に慣れるためにも、本題に入る前にその謎解きをしておきましょう。

謎解きのヒントは互変異性にあります。アセチレンと水を反応させると、不安定なビニルアルコールを経て、アセトアルデヒトが得られるといったケトエノール互変異はよく知られていますが、これと同様にアミドイミド酸互変異性と呼ばれるものがあります。

GREEN052.png

通常は左側のイミド酸よりも右側のアミドが安定

もうここまでくればよいでしょう。例えばグアニンの場合は、次のように考えれば疑問が氷解します。まず、プリンの骨格をもとに、適宜、水素原子をヒドロキシ基やアミノ基に置換します。その後、アミド-イミド酸互変性にもとづき、変身させればグアニンのできあがりです。他の核酸塩基については、この記事の一番下の方に小さく載せておきますので、自分で試した場合の解答代わりにどうぞ。

GREEN053.png

おおっ!似ているじゃん!

 

では、疑問が解け、核酸塩基の化学構造にも慣れたところで、本題となる隕石の話題[1] に戻りましょう。

 

  • 微量成分の化学構造が隕石由来か判断の決め手に

地球上のすべての生命はRNAなりDNAなり核酸に依存して生きており、遺伝情報をコードするためにピリミジンの骨格やプリンの骨格を持った核酸塩基を用いています。  

炭素に富むタイプの隕石は、初期の地球で生命が出現するために必要とされる有機化合物の重要な供給源であったかもしれません。例えば、タンパク質の原料となるアミノ酸はずいぶんと以前から確認されています。核酸を構成する化合物についても、隕石から検出されまいかということは、長年にわたって議論されてきました。しかし、それらが本当に隕石によってもたらされたものか地球上のもので汚染されていないかという疑念は、いつでもつきまといます。

 

NASAのJason氏らの研究[1]では、南極から得られた12の異なる隕石について、ギ酸で抽出し、液体クロマトグラフィー質量分析スペクトルを組み合わせた方法により、100億分の1の検出感度で成分を調べたようです。すると、炭素に富むタイプの隕石について、アデニンやグアニンなどの核酸塩基が検出されました。そして、これらに加えて、地球上では検出されないはずの物質が見つかりました。

GREEN054.PNG

分析によると、6-アミノプリン(つまりアデニン)に加えて、6,8-ジアミノプリン2,6-ジアミノプリンなどが検出されたというのです。これらの化合物は、地球土壌サンプルや南極氷サンプルからは検出されませんでした。アデニンと似て非なる物質が検出されたため、隕石から検出されたアデニンも、生命が酵素反応で作ったものではないようです。

隕石から検出されたこれらアデニン類縁化合物は、シアン化アンモニウムのような単純な構造の化合物を、ガラス容器の中で半年ほど反応させたところ、アデニンと同じく確かに生成したようです。隕石が宇宙を旅し、大気圏に突入する過程で、核酸塩基が生成した可能性は十分にあると考察できます。

GREEN055.png

はたして化学進化のミッシングリンクは宇宙にあるのか。星空を見上げながら、太古の地球に思いをはせるのもよいかもしれません。

 

  • 解答

GREEN056.PNG

クリックで拡大

 

  • 参考論文

[1] "Carbonaceous meteorites contain a wide range of extraterrestrial nucleobases" Michael P. Callahan et al. Proc. Natl. Acad. Sci. USA 2011 DOI: 10.1073/pnas.1106493108

 

  • 関連書籍

 

Avatar photo

Green

投稿者の記事一覧

静岡で化学を教えています。よろしくお願いします。

関連記事

  1. FT-IR・ラマン ユーザーズフォーラム 2015
  2. 光刺激で超分子ポリマーのらせんを反転させる
  3. 【Q&Aシリーズ❶ 技術者・事業担当者向け】 マイクロ…
  4. 【3月開催】第六回 マツモトファインケミカル技術セミナー 有機金…
  5. 論文をグレードアップさせるーMayer Scientific E…
  6. 「電子の動きを観る」ーマックスプランク研究所・ミュンヘン大学・K…
  7. 近傍PCET戦略でアルコキシラジカルを生成する
  8. ルーブ・ゴールドバーグ反応 その1

注目情報

ピックアップ記事

  1. 親水性ひも状分子を疎水性空間に取り込むナノカプセル
  2. ウォルフ・キシュナー還元 Wolff-Kishner Reduction
  3. オルガネラ選択的な薬物送達法:②小胞体・ゴルジ体・エンドソーム・リソソームへの送達
  4. 第25回「ペプチドを化学ツールとして細胞を操りたい」 二木史朗 教授
  5. 鉄触媒を使い分けて二重結合の位置を自由に動かそう
  6. エルマンイミン Ellman’s Imine
  7. 水素社会~アンモニアボラン~
  8. ケイ素半導体加工に使えるイガイな接着剤
  9. 日本入国プロトコル(2022年6月末現在)
  10. 投票!2016年ノーベル化学賞は誰の手に??

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2011年12月
 1234
567891011
12131415161718
19202122232425
262728293031  

注目情報

最新記事

【太陽ホールディングス】新卒採用情報(2026卒)

■■求める人物像■■「大きな志と好奇心を持ちまだ見ぬ価値造像のために前進できる人…

産総研の研究室見学に行ってきました!~採用情報や研究の現場について~

こんにちは,熊葛です.先日,産総研 生命工学領域の開催する研究室見学に行ってきました!本記事では,産…

第47回ケムステVシンポ「マイクロフローケミストリー」を開催します!

第47回ケムステVシンポジウムの開催告知をさせて頂きます!第47回ケムステVシンポジウムは、…

【味の素ファインテクノ】新卒採用情報(2026卒)

当社は入社時研修を経て、先輩指導のもと、実践(※)の場でご活躍いただきます。「いきなり実践で…

MI-6 / エスマット共催ウェビナー:デジタルで製造業の生産性を劇的改善する方法

開催日:2024年11月6日 申込みはこちら開催概要デジタル時代において、イノベーション…

窒素原子の導入がスイッチング分子の新たな機能を切り拓く!?

第630回のスポットライトリサーチは、大阪公立大学大学院工学研究科(小畠研究室)博士後期課程3年の …

エントロピーの悩みどころを整理してみる その1

Tshozoです。 エントロピーが煮詰まってきたので頭の中を吐き出し整理してみます。なんでこうも…

AJICAP-M: 位置選択的な抗体薬物複合体製造を可能にするトレースレス親和性ペプチド修飾技術

概要味の素株式会社の松田豊 (現 Exelixis 社)、藤井友博らは、親和性ペ…

材料開発におけるインフォマティクス 〜DBによる材料探索、スペクトル・画像活用〜

開催日:10/30 詳細はこちら開催概要研究開発領域におけるデジタル・トランスフォーメー…

ロベルト・カー Roberto Car

ロベルト・カー (Roberto Car 1947年1月3日 トリエステ生まれ) はイタリアの化学者…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP