[スポンサーリンク]

一般的な話題

DNAのもとは隕石とともに

[スポンサーリンク]

銀河に願いを

GREEN051.PNG

万物の霊長とされるヒトから、顕微鏡でなければ見ることのできない微生物まで、地球上の生命は、水素・炭素・窒素・酸素・リンの5元素からなるDNAと呼ばれる高分子に遺伝情報をゆだねています。このDNAのもとが、天空を裂いて地球に訪れた隕石から検出されたという話題について紹介します。 

機能美とも呼べる荘厳な二重らせんを作るDNAは、ヌクレオチドと呼ばれる構成単位が、遺伝情報にもとづいて並ぶことで作られます。ヌクレオチドは、リボースと呼ばれる五炭糖、リン酸、そして4種類のうちいずれかひとつの核酸塩基からなる物質です。DNAを構成する核酸塩基は、アデニン(A)・グアニン(G)・シトシン(C)・チミン(T)の4種類です。

化学構造を見てみると、グアニンとアデニンはプリンと呼ばれる有機化合物に似ており、シトシンとチミンはピリミジンと呼ばれる有機化合物に似ています。プリン塩基のグアニンとピリミジン塩基のシトシンが3の水素結合で、プリン塩基のアデニンとピリミジン塩基のチミンが2の水素結合でつながれることにより、2本のDNA鎖が結びつきます。

 

  • 核酸塩基の化学構造を見返してみよう

ところで、プリンやピリミジンに「似ている」とよく言われますが、高校生ぐらいのわたしは資料集を見て「あまり似ていないよ、ウソツキ」と思っていたものです。核酸塩基の化学構造に慣れるためにも、本題に入る前にその謎解きをしておきましょう。

謎解きのヒントは互変異性にあります。アセチレンと水を反応させると、不安定なビニルアルコールを経て、アセトアルデヒトが得られるといったケトエノール互変異はよく知られていますが、これと同様にアミドイミド酸互変異性と呼ばれるものがあります。

GREEN052.png

通常は左側のイミド酸よりも右側のアミドが安定

もうここまでくればよいでしょう。例えばグアニンの場合は、次のように考えれば疑問が氷解します。まず、プリンの骨格をもとに、適宜、水素原子をヒドロキシ基やアミノ基に置換します。その後、アミド-イミド酸互変性にもとづき、変身させればグアニンのできあがりです。他の核酸塩基については、この記事の一番下の方に小さく載せておきますので、自分で試した場合の解答代わりにどうぞ。

GREEN053.png

おおっ!似ているじゃん!

 

では、疑問が解け、核酸塩基の化学構造にも慣れたところで、本題となる隕石の話題[1] に戻りましょう。

 

  • 微量成分の化学構造が隕石由来か判断の決め手に

地球上のすべての生命はRNAなりDNAなり核酸に依存して生きており、遺伝情報をコードするためにピリミジンの骨格やプリンの骨格を持った核酸塩基を用いています。  

炭素に富むタイプの隕石は、初期の地球で生命が出現するために必要とされる有機化合物の重要な供給源であったかもしれません。例えば、タンパク質の原料となるアミノ酸はずいぶんと以前から確認されています。核酸を構成する化合物についても、隕石から検出されまいかということは、長年にわたって議論されてきました。しかし、それらが本当に隕石によってもたらされたものか地球上のもので汚染されていないかという疑念は、いつでもつきまといます。

 

NASAのJason氏らの研究[1]では、南極から得られた12の異なる隕石について、ギ酸で抽出し、液体クロマトグラフィー質量分析スペクトルを組み合わせた方法により、100億分の1の検出感度で成分を調べたようです。すると、炭素に富むタイプの隕石について、アデニンやグアニンなどの核酸塩基が検出されました。そして、これらに加えて、地球上では検出されないはずの物質が見つかりました。

GREEN054.PNG

分析によると、6-アミノプリン(つまりアデニン)に加えて、6,8-ジアミノプリン2,6-ジアミノプリンなどが検出されたというのです。これらの化合物は、地球土壌サンプルや南極氷サンプルからは検出されませんでした。アデニンと似て非なる物質が検出されたため、隕石から検出されたアデニンも、生命が酵素反応で作ったものではないようです。

隕石から検出されたこれらアデニン類縁化合物は、シアン化アンモニウムのような単純な構造の化合物を、ガラス容器の中で半年ほど反応させたところ、アデニンと同じく確かに生成したようです。隕石が宇宙を旅し、大気圏に突入する過程で、核酸塩基が生成した可能性は十分にあると考察できます。

GREEN055.png

はたして化学進化のミッシングリンクは宇宙にあるのか。星空を見上げながら、太古の地球に思いをはせるのもよいかもしれません。

 

  • 解答

GREEN056.PNG

クリックで拡大

 

  • 参考論文

[1] "Carbonaceous meteorites contain a wide range of extraterrestrial nucleobases" Michael P. Callahan et al. Proc. Natl. Acad. Sci. USA 2011 DOI: 10.1073/pnas.1106493108

 

  • 関連書籍

 

Green

Green

投稿者の記事一覧

静岡で化学を教えています。よろしくお願いします。

関連記事

  1. 合成とノーベル化学賞
  2. 【基礎からわかる/マイクロ波化学(株)ウェビナー】 マイクロ波の…
  3. 【速報】2017年ノーベル化学賞は「クライオ電子顕微鏡の開発」に…
  4. 近赤外光を吸収する有機分子集合体の発見
  5. タミフルの新規合成法・その3
  6. 産業紙閲覧のすゝめ
  7. 大学の講義を無料聴講! Academic Earth & You…
  8. 「天然物ケミカルバイオロジー分子標的と活性制御シンポジウム」に参…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. アルキルアミンをボロン酸エステルに変換する
  2. バイオ触媒によるトリフルオロメチルシクロプロパンの不斉合成
  3. 研究者向けプロフィールサービス徹底比較!
  4. リンだ!リンだ!ホスフィン触媒を用いたメチルアミノ化だ!
  5. スタニルリチウム調製の新手法
  6. 高分子を”見る” その1
  7. 聖なる牛の尿から金を発見!(?)
  8. 健康食品 高まる開発熱 新素材も続々
  9. 究極の二量体合成を追い求めて~抗生物質BE-43472Bの全合成
  10. 米のヒ素を除きつつ最大限に栄養を維持する炊き方が解明

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

【ケムステSlackに訊いてみた⑤】再現性が取れなくなった!どうしてる?

日本初のオープン化学コミュニティ・ケムステSlackの質問チャンネルに流れてきたQ&Aの紹介…

但馬 敬介 Keisuke TAJIMA

但馬 敬介(TAJIMA Keisuke, 1974年7月23日 – )は、日本の高分子化学者である…

Carl Boschの人生 その10

Tshozoです。このシリーズも10回を迎えましたが筆者の人生は進んでいません。先日気づいた…

「つける」と「はがす」の新技術|分子接合と表面制御 R3

開講期間令和3(2021)年  9月8日(水)、9日(木)(計2日間)※状況により、we…

第19回ケムステVシンポ「化学者だって起業するっつーの」を開催します!

少し前に化学者のつぶやきからこのような記事が出ました:【ケムステSlackに訊いて見た④】化学系学生…

10種類のスパチュラを試してみた

大好評、「試してみた」シリーズの第6弾。今回は試薬の秤量にか欠かせない、…

第48回「分子の光応答に基づく新現象・新機能の創出」森本 正和 教授

久々の研究者へのインタビューです。第48回は、立教大学の森本正和先生にお願いいたしました。第17回ケ…

畠山琢次 Takuji Hatakeyama

畠山琢次 (はたけやま たくじ)は、日本の化学者である。専門は有機合成化学,材料化学。2021年現在…

Chem-Station Twitter

PAGE TOP