[スポンサーリンク]

一般的な話題

フロリゲンが花咲かせる新局面

[スポンサーリンク]

 

栽培しやすい農作物をもとめて、人類は有史以前からかけあわせを行ってきました。しかしながら、とくに果樹で顕著ですが「桃栗三年柿八年」のことわざにもある通り、ひとりの人間の限られたはかない生涯の中で、そう何度も何度も植物をかけあわせることはできません。ただ鑑賞用の花を提供するだけではなく、品種改良のスピードをあげ食物増産をも可能にするという点で、「(flower)を生じる(generate)もの」=「フロリゲン(florigen)」は注目の研究対象でした。イメージとしては「花咲かじいさんの灰」のような生理活性を持った物質です。  

(結晶構造解析データの出力はProtein Date Bankより)

 

植物がただ葉を増やして成長するだけの状態から、次世代を残すために花を咲かせる状態への相転換。この合図となる分子は、葉で生合成され、師管を通って、芽の部分に至ることが分かっていました。しかし、実際にどの物質が移動しているのかは、数十年の間、誰にもつきとめることはできませんでした。

オーキシンジベレリンサイトカイニンアブシジン酸と、生理活性を持った植物ホルモンは、大量のサンプルからの抽出、そして有機化学を代表とする手法の粋を集めたアプローチで、正体が解き明かされてきました。しかし、フロリゲンに限って、このような手法はなかなか成功をおさめませんでした。

GREEN062.PNG

突破口は“ゲノムを解読したモデル植物を調べ尽くすことですべての植物に共通する原理を解明する分子生物学から。シロイヌナズナ(Arabidopsis thaliana )のゲノム解読と前後して、なかなか花を咲かせようとしない変異株が解析されました。どの遺伝子が壊れていたのか見つけ出し、信号を受け取る標的となる分子も見つかり、とうとうフロリゲン探しにとどめが刺されました[1]。フロリゲンの正体は百数十個のアミノ酸が連なったペプチドで、FT(FLOWERING LOCUS T)タンパク質と呼ばれています。そして、葉で確かにFTタンパク質が生合成されること、FTタンパク質が師管を通って茎頂に至ることも確認されました。

2011年までの知見を合わせると、およそ次のような分子機構が描かれています。

光や生物時計の情報が統合され、転写因子として機能するCO(CONSTANS)タンパク質が、FT 遺伝子が発現するかいなかスイッチのオンオフを決めます。転写因子とは、DNAの配列を認識して結合することで遺伝子が発現するかどうかを決めるタンパク質のことです。葉でFT 遺伝子が発現するようになると、タンパク質の状態で師管を通り、茎頂の細胞で14-3-3タンパク質と結合します。このタンパク質複合体へさらに、転写因子として機能するFD(FLOWERING LOCUS D)タンパク質が結合し、DNAの特別な配列を認識して、遺伝子の発現するパターンを変えます。すると、植物は花を咲かせる準備を始めます。つい最近[2]、タンパク質複合体の結晶構造解析によって精密な立体構造が解かれ、リガンド分子であるFTを、その受容体が認識する仕組みがつまびらかになりました。

FTもFDもCOも14-3-3もコードネームのようなものなので、詳細が気になる場合はTAIR(The Arabidopsis Information Resource)で注釈(annotation)をご覧ください。

GREEN064.PNG

フロリゲン・14-3-3受容体・FD転写因子・DNA断片の複合体(図は論文[2]より)

ただ抽出するだけ、ただ単離するだけ、ただ構造を決めるだけ、ただ合成するだけ。ただそれだけで終わるアプローチに、フロリゲン発見史は、疑問を投げかけるところがあると思います。ただの今までと同じ方法論がいつまでも最先端を走り続けることはできないでしょう。同じようなことは、モデル植物のゲノム解読[3]からすでに10年を経過した分子生物学でも言えるはずです。 化合物にしろ、遺伝子にしろ、研究のターゲットはいずれ限られていきます。

 

閑話休題して、最近になって新たに判明した内容を、きらびやかにいくつか提供しましょう。命名が「花を生じるもの」という由来のフロリゲンでしたが、実はさらにもう一段上の機能があるようです。最近になって明らかになってきた知見、季節ホルモンとしてのフロリゲンについて、紹介します。

 

ケース1.ポプラの冬芽はフロリゲンを合図に春の訪れを知る[4]

ポプラも種子植物なため、フロリゲンを合図にして、いくぶん地味ですが確かに花を咲かせます。しかし、花だけではなく新芽が萌え出でる合図にも使われていることが、明らかになりました。遺伝子操作により、日長に関係なくフロリゲンをたくさん合成する系統ではすぐに芽が成長し、あまりフロリゲンを合成しない系統では芽がなかなか成長を始めようとしないことが示されています。このような性質は、ゲノム解読済のポプラではじめ示されましたが、マツのなかまをはじめ他の樹木でも同様の機能が確認されています。

 

ケース2.ジャガイモの食用部はフロリゲンを合図に成長し始める[5]

ジャガイモは重要な農作物のひとつです。通常は、紫色のよく見るとかわいらしい花を咲かせます。やはり、花を咲かせようと成長し始める合図は、フロリゲンです。遺伝子操作と接ぎ木実験により、成長を始めデンプンを蓄積し始める合図も、フロリゲンであることが示されました。

 

ケース3.フロリゲンは気孔の開き具合に影響を与える[6]

FTタンパク質をコードするFT遺伝子が欠損したシロイヌナズナft 変異株では、気孔が閉じぎみであることが報告されています。フロリゲン受容体14-3-3タンパク質が、青色光受容体タンパク質フォトトロピンや、ATP加水分解プロトンポンプタンパク質と、直接に結合して相互作用しているかもしれず、転写因子FDに依存した経路かどうかは不明なものの、続報に注目したいところです。

 

実は他にも機能がいくつかあるのですが、もう少しはっきりするまで論文を待つとしましょう。これからもしばらくフロリゲンの新機能から目が離せそうにありません。

 

参考文献

  1.  “FD, a bZIP Protein Mediating Signals from the Floral Pathway Integrator FT at the Shoot Apex” Mitsutomo Abe et al. Science 2005 DOI: 10.1126/science.1115983
  2. “14-3-3 proteins act as intracellular receptors for rice Hd3a florigen” Ken-ichiro Taoka et al. Nature 2011 DOI:10.1038/nature10272
  3. “Analysis of the genome sequence of the flowering plant Arabidopsis thaliana” Nature 2000 DOI:10.1038/35048692
  4. “CO/FT Regulatory Module Controls Timing of Flowering and Seasonal Growth Cessation in Trees” Henrik Bohlenius et al. Science 2006 DOI: 10.1126/science.1126038
  5. “Control of flowering and storage organ formation in potato by FLOWERING LOCUS T” Cristina Navarro et al. Nature 2011 DOI:10.1038/nature10431
  6. “FLOWERING LOCUS T Regulates Stomatal Opening” Toshinori Kinoshita et al. Current Biology 2011 DOI: 10.1016/j.cub.2011.06.025

 

関連書籍

[amazonjs asin=”4759811834″ locale=”JP” title=”花はなぜ咲くの? (植物まるかじり叢書 (3))”]

 

Avatar photo

Green

投稿者の記事一覧

静岡で化学を教えています。よろしくお願いします。

関連記事

  1. プラナーボラン - 有機エレクトロニクス界に期待の新化合物
  2. 企業の研究開発のつらさ
  3. ゴジラ級のエルニーニョに…出会った!
  4. 【超難問】幻のインドールアルカロイドの全合成【パズル】
  5. (-)-Calycanthine, (+)-Chimonanth…
  6. 茨城の女子高生が快挙!
  7. Glenn Gould と錠剤群
  8. 【7/21 23:59〆切】研究費総額100万円!「AI × ◯…

注目情報

ピックアップ記事

  1. 日本薬学会第145年会 に参加しよう!
  2. 顕微鏡の使い方ノート―はじめての観察からイメージングの応用まで (無敵のバイオテクニカルシリーズ)
  3. 有機合成化学協会誌2017年9月号:キラルケイ素・触媒反応・生体模倣反応・色素・開殻π造形
  4. 第87回―「NMRで有機化合物の振る舞いを研究する」Daniel O’Leary教授
  5. ザンドマイヤー反応 Sandmeyer Reaction
  6. 非対称化合成戦略:レセルピン合成
  7. グラフェン技術の最先端 ~量産技術と使いやすさの向上、今後の利用展開~
  8. オキソニウムカチオンを飼いならす
  9. AIを搭載した化学物質毒性評価サービス「Chemical Analyzer」の販売を開始
  10. 化学者たちのネームゲーム―名付け親たちの語るドラマ

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2011年12月
 1234
567891011
12131415161718
19202122232425
262728293031  

注目情報

最新記事

第54回ケムステVシンポ「構造から機能へ:ケイ素系元素ブロック材料研究の最前線」を開催します!

今年も暑くなってきましたね! さて、本記事は、第54回ケムステVシンポジウムの開催告知です! 暑さに…

有機合成化学協会誌2025年7月号:窒素ドープカーボン担持金属触媒・キュバン/クネアン・電解合成・オクタフルオロシクロペンテン・Mytilipin C

有機合成化学協会が発行する有機合成化学協会誌、2025年7月号がオンラインで公開されています。…

ルイス酸性を持つアニオン!?遷移金属触媒の新たなカウンターアニオン”BBcat”

第667回のスポットライトリサーチは、東京大学大学院工学系研究科 野崎研究室 の萬代遼さんにお願いし…

解毒薬のはなし その1 イントロダクション

Tshozoです。最近、配偶者に対し市販されている自動車用化学品を長期に飲ませて半死半生の目に合…

ビル・モランディ Bill Morandi

ビル・モランディ (Bill Morandi、1983年XX月XX日–)はスイスの有機化学者である。…

《マイナビ主催》第2弾!研究者向け研究シーズの事業化を学べるプログラムの応募を受付中 ★交通費・宿泊費補助あり

2025年10月にマイナビ主催で、研究シーズの事業化を学べるプログラムを開催いたします!将来…

化粧品用マイクロプラスチックビーズ代替素材の市場について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、化粧品…

分子の形がもたらす”柔軟性”を利用した分子配列制御

第666回のスポットライトリサーチは、東北大学多元物質科学研究所(芥川研究室)笠原遥太郎 助教にお願…

柔粘性結晶相の特異な分子運動が、多段階の電気応答を実現する!

第665回のスポットライトリサーチは、東北大学大学院工学研究科(芥川研究室)修士2年の小野寺 希望 …

マーク・レビン Mark D. Levin

マーク D. レビン (Mark D. Levin、–年10月14日)は米国の有機化学者である。米国…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP