[スポンサーリンク]

archives

取り扱いやすく保存可能なオキシム試薬(O-ベンゼンスルホニルアセトヒドロキサム酸エチル)

[スポンサーリンク]

概要

近畿大学の兵藤先生が開発されたO-ベンゼンスルホニルアセトヒドロキサム酸エチルは、不安定なヒドロキシルアミンの等価体となる有用で取り扱いやすいオキシム反応剤です。触媒量のブレンステッド酸存在下、温和な条件で反応し、①アルデヒド→ニトリル、②ケトン→第二級アミド、③アセチル基→(脱アセチルを伴う)アミノ基への変換が可能です。今回はこの便利な試薬についてご紹介します。

コンセプト

オキシム化合物の合成で用いられるヒドロキシルアミン誘導体は、不安定で爆発性があります。本試薬は、分子中の酸素原子が保護された構造を有していることから、安全に保存でき、取り扱いが容易です(Fig. 1)。触媒量の酸によって活性化すれば様々な変換反応に活用できます。

Fig. 1 安定で取り使いが容易なo-ベンゼンスルホニルアセトヒドロキサム酸エチル                  (CAS No. 2097677-32-0)

アルデヒド→ニトリル 1)

ニトリル化合物の合成は、芳香族ジアゾ化合物とCuCNを反応させるSandmeyer反応や、ハロゲン化アリールもしくはトシラートなどとCuCNの反応によるローゼンムント・フォンブラウン反応、ハロゲン化アルキルとKCNとの反応などがあります。また、アルデヒドを出発原料としたSchmidt反応もその一例です。

このO-ベンゼンスルホニルアセトヒドロキサム酸エチル(以下、オキシム反応剤)を用いると、アルデヒドからニトリルが温和な条件で合成できます。まず、オキシム反応剤と触媒量のブレンステッド酸から生じる活性化体(A)が、系中の水によってNH2OSO2Ph・HA(B)となり、アルデヒドとの反応によって生じる中間体(C)を経由して、最終的にニトリルに変換される反応メカニズムが提唱されています。(Fig. 2)

Fig. 2 提唱されている反応メカニズム(アルデヒド→ニトリル)

芳香族、脂肪族アルデヒドどちらも高収率で反応し、対応するニトリルを与えます。固体酸触媒であるAmberlyst-15でも反応し、20回のリサイクルも確認されています。また、ルイス酸(BF3・Et2O)では反応しません。脱水条件でも、Fig.2 中の中間体(B)が生成しないため反応しません。各基質を用いた反応例は以下の通りです。(Table 1)

Table 1

ケトン→第二級アミド 2)

カルボニル化合物からアミドを合成する方法は、縮合剤を用いたカルボン酸とアミンとの反応など数多く知られています。例えばカルボニル化合物とヒドロキシルアミンとの反応で合成されるケトオキシムのベックマン転移や、エステルにNaOMeを作用させてアミンと反応させる方法3)などが挙げられます。(Fig. 3)

Fig. 3  カルボニル化合物からアミドへの変換例

今回のオキシム反応剤を用いると、温和な条件でケトンから第二級アミドが合成できます。まず、オキシム反応剤と触媒量のブレンステッド酸から生じる活性化体(A)から、系中の水によってNH2OSO2Ph・HA (B)が発生します。これがケトンと反応して生じた中間体(C)、さらにベックマン転移による中間体(D)へと変換されて水と反応、さらに互変異性によって目的物の第二級アミドが生成する反応メカニズムが提唱されています。(Fig. 4)

Fig. 4  提唱されている反応メカニズム(ケトン→第二級アミド)

芳香族、脂肪族ケトンのどちらも高収率で反応し、対応する第二級アミドを与えます。主な反応例は以下の通りです。(Table 2)

Table 2

アセチル基→(脱アセチルを伴う)アミノ基への変換

芳香族アミンの合成においては、様々な出発物質からの変換法が知られています。例えば、ニトロ基の還元、ハロゲン化アリールからのBuchwald−Hartwig反応、またC-H活性化反応による導入(金属触媒4)、フォトレドックス反応5)、電気化学6))が挙げられます。

今回のオキシム反応剤を用いると、アセチル基を持つ芳香族/脂肪族化合物を出発物質とした(脱アセチルを伴う)アミンの合成が可能です。反応は、オキシム反応剤が溶媒のMeOHとエステル交換し、ブレンステッド酸との反応により生じた活性化体(A)が、加水分解などでNH2OSO2Ph・HA (B)に変換され、アセチル基を有する化合物との脱水反応で生じる中間体(C)からベックマン転移で生成した中間体(D)が、さらにMeOHと反応してN-aryl acetimidate(E)に変換されます。ここから目的物であるアミンへと変換されるメカニズムが提唱されています。(Fig. 5)

Fig. 5  提唱されている反応メカニズム(アセチル基→アミノ基)

各種アセチル基を持つ芳香族/脂肪族化合物からは、医薬品、電子材料等のビルディングブロックに相当する化合物が合成できます。(Table 3)

Table 3

おわりに

今回は、触媒量のブレンステッド酸を用いる温和な条件で、各種の変換反応が可能なオキシム反応剤をご紹介しました。機能性有機材料や、全合成における工程の短縮など、いろいろな場面で有効な試薬ですので、ぜひご活用ください!詳しくは関連ページからご確認いただけます。

参考文献

1)Hyodo, K., Togashi, K., Oishi, N., Hasegawa, G., Uchida, K. : Org. Lett., 19, 3005 (2017). DOI: 10.1021/acs.orglett.7b01263

2)Hyodo, K., Hasegawa, G., Oishi, N., Kuroda, K., Uchida, K. : J. Org. Chem., 83, 13080 (2018).DOI: 10.1021/acs.joc.8b01810

3)Ohshima, T., Hayashi, Y., Agura, K., Fujii, Y., Yoshiyama, A., Mashima, K. : Chem. Commun., 48, 5434 (2012). DOI: 10.1039/C2CC32153J

4)Tezuka, N., Shimojo, K., Hirano, K., Komagawa, S., Yoshida, K., Wang, C., Miyamoto, K., Saito, T., Takita, R., Uchiyama, M. : J. Am. Chem. Soc., 138, 9166 (2016).

DOI:10.1021/jacs.6b03855

5)Romero, N. A., Margrey, K. A., Nicholas, E., Tay, N. E., Nicewicz, D. A. : Science , 349, 1326 (2015). DOI: 10.1126/science.aac9895

6)Morofuji, T., Shimizu, A., Yoshida, J. : J. Am. Chem. Soc.,135, 5000 (2013).

DOI:10.1021/ja402083e

関連サイト

 

 

 

 

富士フイルム和光純薬

投稿者の記事一覧

「次の科学のチカラとなり、人々の幸せの源を創造する」
みなさまの研究開発を支えるチカラとなるべく、
これからも高い技術とクオリティで、次代のニーズにお応えします。
Twitterでの情報提供を始めました。

関連記事

  1. 研究者1名からでも始められるMIの検討-スモールスタートに取り組…
  2. 【Vol.1】研究室ってどんな設備があるの? 〜ロータリーエバポ…
  3. 化学研究で役に立つデータ解析入門:回帰分析の活用を広げる編
  4. 免疫の生化学 (1) 2018年ノーベル医学賞解説
  5. 論文引用ランキングから見る、化学界の世界的潮流
  6. タングトリンの触媒的不斉全合成
  7. ケムステV年末ライブ2021開催報告! 〜今年の分子 and 人…
  8. ベンゾ[1,2-b:4,5-b’]ジチオフェン:Be…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 「田中さん惜しかった」--分解酵素「プロテアソーム」を精製
  2. 2007年10大化学ニュース
  3. 緑色蛍光タンパク質を真似してRNAを光らせる
  4. 第144回―「CO2を捕捉する多孔性金属-有機構造体の開発」Myunghyun Paik Suh教授
  5. 書いたのは機械。テキストの自動生成による初の学術文献が出版
  6. ちょっと変わったイオン液体
  7. 米陸軍に化学薬品検出スプレーを納入へ
  8. Small Molecule Medicinal Chemistry -Strategies and Technologies-
  9. BASFとはどんな会社?-1
  10. 野依記念物質科学研究館

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2021年8月
 1
2345678
9101112131415
16171819202122
23242526272829
3031  

注目情報

注目情報

最新記事

毎年恒例のマニアックなスケジュール帳:元素手帳2023

hodaです。去年もケムステで紹介されていた元素手帳2022ですが、2023年バージョンも発…

二刀流センサーで細胞を光らせろ!― 合成分子でタンパク質の蛍光を制御する化学遺伝学センサーの開発 ―

第447回のスポットライトリサーチは、東京大学大学院 理学系研究科化学専攻 生体分子化学研究室(キャ…

【12月開催】第4回 マツモトファインケミカル技術セミナー有機金属化合物「オルガチックス」の触媒としての利用-ウレタン化触媒としての利用-

■セミナー概要当社ではチタン、ジルコニウム、アルミニウム、ケイ素等の有機金属化合…

化学ゆるキャラ大集合

企業PRの手段の一つとして、キャラクターを作りホームページやSNSで登場させることがよく行われていま…

最先端バイオエコノミー社会を実現する合成生物学【対面講座】

開講期間2022年12月12日(月)13:00~16:202022年12月13日(火)1…

複雑なモノマー配列を持ったポリエステル系ブロックポリマーをワンステップで合成

第446回のスポットライトリサーチは、北海道大学 大学院工学研究院 応用化学部門 高分子化学研究室(…

河崎 悠也 Yuuya Kawasaki

河崎 悠也 (かわさき ゆうや) は、日本の有機化学者。九州大学先導物質化学研究所 …

研究者1名からでも始められるMIの検討-スモールスタートに取り組む前の3つのステップ-

開催日:2022/12/07  申込みはこちら■開催概要近年、少子高齢化、働き手の不足の…

吉田 優 Suguru Yoshida

 吉田 優(よしだ すぐる)は、日本の化学者。専門は、有機合成化学、ケミカルバイオロジー。2…

小山 靖人 Yasuhito Koyama

小山 靖人(こやま やすひと)は、日本の有機化学者。富山県立大学工学部医薬品工学…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP