[スポンサーリンク]

化学者のつぶやき

生きたカタツムリで発電

[スポンサーリンク]

とある蝸牛の超発電法

生きたままのカタツムリに電極を取りつけ、電気としてエネルギーを取り出すことに成功。決め手はカーボンナノチューブにつながれた2種類の酵素にあり!?

画像は論文[1]より

旅先で「あっ携帯電話の電源が切れそう!」となったことはありませんか。カバンをまさぐってもコンセットに刺すタイプの充電器がなく、電池で充電できる簡易機をコンビニエンスストアで買う羽目になった経験のある方も少なくないでしょう。

どうにか手持ちの何かからエネルギーを電気に変換できればいいのにと思うシーンは、この他にも多々あります。しかし、近い将来には、チクッと電極を自分自身のからだに取りつけるだけで、電気が取り出せるようになるかもしれませんよ。

 

GREEN00437.PNG

 

この記事で紹介するカタツムリ発電[1] ののののエネルギー源は、血中のグルコース(ブドウ糖)です。「血糖値」の言葉の通り、グルコースはカタツムリ*だけではなくヒトの血液にも含まれています。そのため、原理的にはヒトでも同様の発電方法が可能であり、この技術を開発した研究チーム[1]も人間へ応用できることを言及しています。例えば、先ほどの携帯電話のように、ゆくゆくは非常の電源になるかもしれません。

今回[1] 、報告されたカタツムリ発電の場合、電極にはカーボンナノチューブを使用し、陽極には酸素分子を還元して水分子にする酵素を、陰極にはグルコースを酸化する酵素を用いています。酵素に酸化還元反応を触媒させ化学電池にしようという発想は以前からありました。この発電方法を、生体に埋め込んだ装置で行わせたシステムが、今回のカタツムリ発電です。

 

陽極の酸化還元酵素には、酵素分野でよく研究されてきたカワラタケ(Trametes versicolor )のラッカーゼが使われています。カワラタケは枯れ木に生えるキノコのなかまであり、樹木のリグニンでさえも分解してしまう強力な活性のある酵素を持ちます。

 

GREEN00436.png

カワラタケ由来ラッカーゼの立体構造

タンパク質の構造データはPDB(Protein Data Bank)より

 

他方、陰極のグルコース酸化酵素は、なかなか適したものが存在しなかったようで、苦労のほどがうかがえます。酸化還元反応を仲介するニコチンアミドアデニンジヌクレオチド(nicotinamide adenine dinucleotide; NAD+)のような物質を反応のたびに補充しないと機能しないものはふさわしくありません。また、過酸化水素のように有害な物質が発生するものもダメです。結局、ピロロキノリンキノンを補因子とする酵素で、基礎となるデータを新たに集めています。

GREEN00435.png

グルコースをグルクロン酸に酸化する酵素の立体構造

タンパク質の構造データはPDB(Protein Data Bank)より

 

このふたつの酵素に対して、アミノ基を標的としてピレノブタン酸スクシンイミドエステル(pyrenebutanoic acid succinimidyl ester; PBSE)でタンパク質を修飾し、この修飾された酵素タンパク質をππ相互作用でカーボンナノチューブにそれぞれつなげています。そして、カーボンナノチューブにつながれた酵素が、カタツムリの血液に含まれるグルコースを酸化し、電子が移動して、そこから電気エネルギーを得る仕組みです。この手の研究をしている方々には常套手段なのかもしれませんが、カーボンナノチューブと酵素タンパク質を電気的につなげるために、ピレンの構造が上手く活用されているところが、面白いですね。

GREEN00432.png

ピレノブタン酸スクシンイミドエステル(PBSE)の構造式

カタツムリはとても元気で、よく食べよく這いカタツムリがいきいきと幸せに暮らせるよう研究チームは気にかけたとのこと。カタツムリが弱ると取り出せる電力も少なくなってしまいます。生きているからこそ機能する発電方法だけに、意外と自然に優しい発電方法なのかもしれません。

それだけにふと「高齢者の孤独死アラームにも使えるか?」なんて考えてしまいました。

あとは「自家発電ダイエット」とか?

 

追記

*補注「なぜカタツムリを実験材料に選んだのか?」

なぜカタツムリであるのかは、体の構造が単純な割に、電極を固定できる殻があるからだと思います。脊椎動物は言うに及ばず、昆虫などの節足動物は、軟体動物であるカタツムリよりも体の構造が複雑です。他方、ミミズが属する環形動物・プラナリアが属する扁形動物・センチュウが属する線形動物など、うにょうにょして軟らかい彼らに、生きたまま動き回れる状態で電極を固定することは至難のわざでしょう。また、電極を取り扱う以上、海産の生き物は明らかにアウトです。スネイル(snail)の「のろま」という語感、フランス料理ではエスカルゴとして食用にされていることも、自然愛護運動を交わすために意識して、カタツムリを実験材料に選んだのかもしれません。

というGreenの勝手な想像でした。本当のところは論文を書いた研究チームのみが知るところでしょう。

 

参考論文

[1] 生きたカタツムリに埋め込んだバイオ燃料電池

“Implanted Biofuel Cell Operating in a Living Snail” Lenka Halamkova J. Am. Chem. Soc. 2012 DOI: 10.1021/ja211714w

[2] 緑茶がカーボンナノチューブを溶かす

“Green Tea Solution Individually Solubilizes Single-walled Carbon Nanotubes” Genki Nakamura et al. Chemistry Leters 2007 DOI: 10.1246/cl.2007.1140

 

参考URL

ナノチューブを溶かす意外なもの (有機化学美術館・分館)

 

関連書籍

 

Green

Green

投稿者の記事一覧

静岡で化学を教えています。よろしくお願いします。

関連記事

  1. 危険ドラッグ:創薬化学の視点から
  2. ものごとを前に進める集中仕事術「ポモドーロ・テクニック」
  3. 研究者の活躍の場は「研究職」だけなのだろうか?
  4. リチウムイオンに係る消火剤電解液のはなし
  5. 天然のナノチューブ「微小管」の中にタンパク質を入れると何が起こる…
  6. ノーベル化学賞メダルと科学者の仕事
  7. 今年は国際周期表年!
  8. 2019年ノーベル化学賞は「リチウムイオン電池」に!

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. GRE Chemistry
  2. エチレンをつかまえて
  3. 水 (water, dihydrogen monoxide)
  4. 印象に残った天然物合成 2
  5. 基礎材料科学
  6. スケールアップのポイント・考え方とトラブル回避【終了】
  7. トロスト酸化 Trost Oxidation
  8. 危険物データベース:危険物に関する基礎知識
  9. ケイ素 Silicon 電子機器発達の立役者。半導体や光ファイバーに利用
  10. 金属-有機構造体 / Metal-Organic Frameworks

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

位置多様性・脱水素型クロスカップリング

第281回のスポットライトリサーチは、菅原真純 博士にお願いしました。菅原さんは理化学研究所…

エノールエーテルからα-三級ジアルキルエーテルをつくる

α-オキシラジカルを経るエノールエーテルのa位官能基化が開発された。種々のアルキルエノールエーテルと…

アメリカ大学院留学:卒業後の進路とインダストリー就活(2)

前回の記事では、アメリカのPhD取得後の進路について、一般的な進路や就活を始める時期について紹介しま…

【第11回Vシンポ特別企画】講師紹介③:大内 誠 先生

今回の記事では、第11回バーチャルシンポジウム「最先端精密高分子合成」をより楽しむべく講師の一人であ…

第131回―「Nature出版社のテクニカルエディターとして」Laura Croft博士

第131回の海外化学者インタビューはローラ・クロフト博士です。Nature Chemistry誌とN…

【書籍】機器分析ハンドブック2 高分子・分離分析編

2020/10/20に刊行されたばかりのホットな書籍をご紹介します。概要はじめて機器…

アメリカ大学院留学:卒業後の進路とインダストリー就活(1)

PhD留学について、受験や大学院生活についての情報は豊富に手に入るようになってきていますが、卒業後の…

オキシム/ヒドラゾンライゲーション Oxime/Hydrazone Ligation

概要ケトン・アルデヒドは生体分子にまれにしか存在しないため、位置選択的な生体共役反応の標的として…

Chem-Station Twitter

PAGE TOP