[スポンサーリンク]

エネルギー化学

嘉部 量太 Ryota Kabe

[スポンサーリンク]

嘉部 量太 (KABE Ryota、1983年3月4日-)は日本の化学者である。沖縄科学技術大学院大学 有機光エレクトロニクスユニット 准教授.専門分野は材料科学、有機半導体デバイス、錯体化学。

経歴

2008年~2010年 JSPS 特別研究員 (DC2)

2009年~2009年 University of Southern California (USA) 訪問研究員 (Prof. M. Thompson)

2010年〜2011年 Bowling Green State University (USA) 博士研究員 (Prof. P. Anzenbacher)

2011年~2014年 JSPS 特別研究員 (PD)

2011年~2012年 Max Plank Institute for Polymer Research (Germany) 博士研究員 (Prof. K. Müllen)

2012年~2014年 九州大学 博士研究員 (安達千波矢教授)

2014年~2019年 九州大学 助教 (安達千波矢教授)

2014年~2019年 JST ERATO 安達分子エキシトン工学プロジェクト グループリーダー

2019年~現在  沖縄科学技術大学院大学 有機光エレクトロニクスユニット 准教授

受賞歴

2019年 平成31年度科学技術分野の文部科学大臣表彰 若手科学者賞

2018年 日本化学会第98春季年会 優秀講演賞(学術)

研究業績

(1) 長寿命励起子・リン光に関する研究

有機物の三重項励起状態は、有機ELなどの有機半導体デバイス、バイオイメージング、フォトンアップコンバージョンなど多くの用途で重要な役割を果たす。三重項励起状態からの放射遷移であるリン光は、スピン反転過程を伴うため、スピン軌道相互作用の大きさによってその速度定数は106~10-2 s-1と大きく変化する。特に長寿命三重項励起状態から得られる遅いリン光発光は、イメージングやアップコンバージョンにおいて有用であるが、競合する非放射失活によって容易に失活してしまう。

嘉部グループは、この非放射失活の原因が溶媒やホスト媒体などの拡散やエネルギー移動によることを解明し、媒体の分子構造、エネルギー準位の制御により室温下で非放射失活を抑制することに成功した。金属有機構造体(MOF)をホスト媒体として利用し、室温下で23秒の寿命を持つ最長の長寿命リン光を実現した上、MOFの空孔を利用し、長寿命励起状態を酸素やキセノンといったガスを用いることで、可逆かつ高速に制御可能であることを見出した。この手法を有機ELなど半導体材料へ拡張することで、残光OLEDを実現した (Fig. 1)。

Fig. 1. (a) 三重項励起子挙動の外部因子制御、(b) キセノン導入による発光変化、(c) 残光有機EL

(2) 有機蓄光に関する研究

蓄光材料は非常誘導灯や時計文字盤など、電源を必要としない光源として実用化されており、現在、世界で約400億円の市場を持つ。既存の蓄光材料は全て無機材料で構成されており、耐久性・発光特性に優れる一方で、その多くは希土類を必要とすること、1000度以上の高温焼成を必要とすること、焼成後は溶媒等に不溶なため、微細化および分散化といった工程を必要とすること、微細化による光散乱によって透明性に乏しいなどの問題点が残されている。有機材料を用いることでこれらの課題を解決可能であるが、これまでに有機物を用いた蓄光発光は特殊な条件を除いて実現していない。有機蓄光の実現には電荷分離状態の利用が不可欠であるが、安定な電荷分離状態を実現できていないためである。

嘉部・安達らは太陽電池のように電子ドナー・アクセプター界面では効率的な光誘起電荷分離が生じること、これまでの研究で得た有機半導体材料における非放射失活抑制技術を利用して、世界初の有機蓄光システムを実現した。有機蓄光システムは単純な電子ドナー材料と電子アクセプター材料から構成され、これらを混合するだけで機能する。光照射によって、ドナーからアクセプターへの電荷移動励起状態が形成され、さらにそこから安定電荷分離状態が形成されることで光エネルギーを長時間保持することが可能となる。その後、電荷再結合を経由してべき乗則に従う長時間の蓄光発光が得られる (Fig. 2)。

この有機蓄光の発光は分子間電荷移動遷移のため、発光効率が悪く、色純度も悪い。そこで、この有機蓄光システムに少量の蛍光材料を添加することで、ドナー・アクセプターの電荷移動励起状態から蛍光材料へのフェルスター型エネルギー移動によって、蛍光材料から蓄光発光を取り出すことに成功した。この手法により、フルカラーおよび白色の蓄光発光を実現しただけでなく、色純度の向上、6倍の発光持続時間を実現した。さらに、柔軟性・透明性・プロセス性を改善するために、低分子アクセプター材料の代わりにアクセプターポリマーを利用することで、透明・フレキシブルな有機蓄光フィルムを実現した。

Fig.2. (a) FRETを利用したフルカラー有機蓄光、(b) ポリマーを用いた透明フレキシブル有機蓄光

名言集

 

コメント&その他

 

関連動画

2020年5月23日 第三回ケムステバーチャルシンポジウム「若手化学者、海外経験を語る」より

関連文献

  1. Lin, Z.; Kabe, R.; Adachi, C. Chem. Lett. 2020, 49, 203. DOI:10.1246/cl.190823
  2. Nishimura, N.; Lin, Z.; Jinnai, K.; Kabe, R.; Adachi, C. Adv. Funct. Mater. 2020, 30, 2000795. DOI:10.1002/adfm.202000795
  3. Lin, Z.; Kabe, R.; Wang, K.; Adachi, C. Nat. Commun. 2020, 11, 191. DOI:10.1038/s41467-019-14035-y
  4. Jinnai, K.; Nishimura, N.; Kabe, R.; Adachi, C. Chem. Lett. 2019, 48, 270. DOI:10.1246/cl.180949
  5. Lin, Z.; Kabe, R.; Nishimura, N.; Jinnai, K.; Adachi, C. Adv. Mater. 2018, 30, 1803713. DOI:10.1002/adma.201803713
  6. Jinnai, K.; Kabe, R.; Adachi, C. Adv. Mater. 2018, 30, 1800365. DOI:10.1002/adma.201800365
  7. Kabe, R.; Adachi, C. Nature 2017, 550, 384. DOI:10.1038/nature24010

関連書籍

[amazonjs asin=”4759814191″ locale=”JP” title=”光化学フロンティア 未来材料を生む有機光化学の基礎 (DOJIN ACADEMIC SERIES)”]

関連リンク

関連記事

  1. ハロルド・クロトー Harold Walter Kroto
  2. イヴァン・フック Ivan Huc
  3. アンドレアス ファルツ Andreas Pfaltz
  4. クゥイリン・ディン Kui-Ling Ding
  5. 飯島澄男 Sumio Iijima
  6. ウィリアム・ロウシュ William R. Roush
  7. 越野 広雪 Hiroyuki Koshino
  8. アーサー・C・コープ賞・受賞者一覧

注目情報

ピックアップ記事

  1. 日本学士院賞・受賞化学者一覧
  2. 渡辺化学工業ってどんな会社?
  3. 肺がん治療薬イレッサ「使用制限の必要なし」 厚労省検討会
  4. 新しい2-エキソメチレン型擬複合糖質を開発 ~触媒的な合成法確立と生物活性分子としての有用性の実証に成功~
  5. 有機合成化学協会誌6月号:ポリフィリン・ブチルアニリド・ヘテロ環合成・モノアシル酒石酸触媒・不斉ヒドロアリール化・機能性ポリペプチド
  6. 有機触媒によるトリフルオロボレート塩の不斉共役付加
  7. ニトログリセリン / nitroglycerin
  8. 学問と創造―ノーベル賞化学者・野依良治博士
  9. ジアステレオ逆さだぜ…立体を作り分けるIr触媒C–Hアリル化!
  10. ケトンをエステルに変えてぶった斬る!脱アシル型カップリング反応の開発

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2020年5月
 123
45678910
11121314151617
18192021222324
25262728293031

注目情報

最新記事

粉末 X 線回折の基礎知識【実践·データ解釈編】

粉末 X 線回折 (powder x-ray diffraction; PXRD) は、固体粉末の試…

異方的成長による量子ニードルの合成を実現

第693回のスポットライトリサーチは、東京大学大学院理学系研究科(佃研究室)の髙野慎二郎 助教にお願…

miHub®で叶える、研究開発現場でのデータ活用と人材育成のヒント

参加申し込みする開催概要多くの化学・素材メーカー様でMI導入が進む一…

医薬品容器・包装材市場について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、医…

X 線回折の基礎知識【原理 · 基礎知識編】

X 線回折 (X-ray diffraction) は、原子の配列に関する情報を得るために使われる分…

有機合成化学協会誌2026年1月号:エナミンの極性転換・2-メチル-6-ニトロ安息香酸無水物(MNBA)・細胞内有機化学反応・データ駆動型マルチパラメータスクリーニング・位置選択的重水素化法

有機合成化学協会が発行する有機合成化学協会誌、2026年1月号がオンラインで公開されています。…

偶然と観察と探求の成果:中毒解毒剤から窒素酸化物を窒素分子へ変換する分子へ!

第692回のスポットライトリサーチは、同志社大学大学院理工学研究科(小寺・北岸研究室)博士後期課程3…

嬉野温泉で論文執筆缶詰め旅行をしてみた【化学者が行く温泉巡りの旅】

論文を書かなきゃ!でもせっかくの休暇なのでお出かけしたい! そうだ!人里離れた温泉地で缶詰めして一気…

光の強さで分子集合を巧みに制御!様々な形を持つ非平衡超分子集合体の作り分けを実現

第691回のスポットライトリサーチは、千葉大学大学院 融合理工学府 分子集合体化学研究室(矢貝研究室…

化学系研究職の転職は難しいのか?求人動向と転職を成功させる考え方

化学系研究職の転職の難点は「専門性のニッチさ」と考えられることが多いですが、企業が求めるのは研究プロ…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP