[スポンサーリンク]

化学者のつぶやき

イナミドを縮合剤とする新規アミド形成法

[スポンサーリンク]

2016年、江西師範大学のJunfeng Zhaoらは、イナミドを縮合剤として用いることで、一切の添加剤を必要とせず、ラセミ化フリーでペプチドを合成することに成功した。単純なアミドやジペプチドの合成だけでなく、ペプチドのセグメント縮合にも応用できる。

“Ynamides as Racemization-Free Coupling Reagents for Amide and Peptide Synthesis”
Long, H.; Silin, X.; Zhenguang, Z.; Yang, Y.; Zhiyuan, P.; Ming, Y.; Changliu, W.; Junfeng, Z.* J. Am. Chem. Soc. 2016, 138, 13135–13138. DOI: 10.1021/jacs.6b07230

問題設定

アミド結合の形成には、カルボン酸を活性化させる形での縮合剤が多く使用されている。しかし、これらの縮合剤を用いる場合、試薬自身や添加剤などに由来する多量の廃棄物が生じるため、原子効率に優れる反応剤が求められている。
イナミンは、高収率・添加剤不要でペプチドを合成できる縮合剤として1964年に報告されていた[1]。しかし、イナミンは熱に不安定で水とも反応し、さらにラセミ化も引き起こしやすいため実用的な縮合剤では無かった[2]。

技術や手法のキモ

イナミンの窒素置換基を電子求引基に変えたイナミドを用いることが鍵であった。本化合物は熱的に安定で、かつ水中でも反応に使用できる。また、電子求引基導入の結果として塩基性も低下しており、ラセミ化を抑制する効果もある。
今回の研究ではMYMsA、MYTsAを最適試薬として見いだしている。2工程の合成法にていずれも簡便に合成できる。

主張の有効性検証

①既存の縮合剤との比較

MYMsA, MYTsAのどちらを使用した場合でも、既存の縮合剤を使用した場合に比べ高収率で反応が進行した。かつ一切のラセミ化が見られていない。

②基質一般性

N末の保護基としてはBoc, Cbz, Fmocのいずれも適用可能である。アミノ酸側鎖に-OH,-SH,-CONH2,NHが含まれていても選択的に反応するため、側鎖の保護は必要ない。ValやAibといった立体障害が大きい基質でも、反応時間を長くすることで高い収率が得られているほか、大スケール(20 mmol)でも収率にはほぼ影響がない。ペプチドのフラグメント縮合にも応用できる。

③反応機構について

脂肪族・芳香族、不飽和カルボン酸に対してMYTsAを混合すると、室温で数時間以内に、高収率で対応するα-アシロキシイナミドが得られる。これらのα-アシロキシイナミドは全て室温で安定に存在した。また、強酸(TfOH)を触媒として加えると反応時間が2.4倍短縮されたという報告[3]がある。
これらの事実をもとに、α-アシロキシイナミド生成・ペプチド結合生成それぞれの段階について、反応機構解析が他研究者によって行われている(下図)[4]。
まずイナミドのプロトン化が起こりイミニウム種が生じ、カルボン酸が生じることでα-アシロキシイナミドが生成する。これがさらにもう一分子のカルボン酸と絡むことでアミド形成反応が進行し、副生成物としてスルホニルイミドが生じる。

論文[4]より引用

議論すべき点

  • AibやValなどの、立体障害の大きい基質でも高い収率を得られている点は特筆すべきだろう。
  • one-potかつ大スケールで反応を行えるため、大量合成にも応用可能。しかし、反応時間が長いのが欠点。
  • 5残基のペプチドであるLeu-Enkephalinの合成を行う場合、数日かかり、収率も70%まで落ちている。ラセミ化リスクを懸念してか活性化箇所をグリシンにしていることも注意点。他の基質をフラグメントカップリングに利用する場合、どれほどラセミ化するかは未知数。

参考文献

  1. Buijle, R.; Viehe, H. G. Angew. Chem., Int. Ed. Engl. 1964, 3, 582. DOI: 10.1002/anie.196405822
  2. Weygand, F.; König, W.; Buyle, R.;Viehe, H. G. Chem. Ber. 1965, 98, 3632. DOI: 10.1002/cber.19650981130
  3. Hu, L.; Zhao, J. Synlett 2017, 28, 1663. DOI: 10.1055/s-0036-1588860
  4. Zhang, S.; Xing, H.; Deng, Z. Org. Biomol. Chem. 2017, 15, 6367. doi:10.1039/C7OB01378G

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. ピレスロイド系殺虫剤のはなし
  2. 炭素繊維は鉄とアルミに勝るか? 2
  3. TQ: TriQuinoline
  4. 【基礎からわかる/マイクロ波化学(株)ウェビナー】 マイクロ波の…
  5. 連鎖と逐次重合が同時に起こる?
  6. 第18回次世代を担う有機化学シンポジウム
  7. 結晶データの登録・検索サービス(Access Structure…
  8. 計算化学:DFT計算って何?Part II

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 有機合成化学協会誌2018年2月号:全アリール置換芳香族化合物・ペルフルオロアルキル化・ビアリール型人工アミノ酸・キラルグアニジン触媒・[1,2]-ホスファ-ブルック転位
  2. iPadで使えるChemDrawが発売開始
  3. The Art of Problem Solving in Organic Chemistry
  4. 有機半導体の界面を舞台にした高効率光アップコンバージョン
  5. 男性研究者、育休を取る。
  6. 化学者の単語登録テクニック
  7. 内部アルケンのアリル位の選択的官能基化反応
  8. コエンザイムQ10 /coenzyme Q10
  9. ジョン・ケンドリュー John C. Kendrew
  10. タンパク質リン酸化による液-液相分離制御のしくみを解明 -細胞内非膜型オルガネラの構築原理の解明へ-

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2018年1月
1234567
891011121314
15161718192021
22232425262728
293031  

注目情報

注目情報

最新記事

第27回ケムステVシンポ『有機光反応の化学』を開催します!

7月に入り、いよいよ日差しが強まって夏本格化という時期になりました。光のエネルギーを肌で感じられます…

国内最大級の研究者向けDeepTech Company Creation Program「BRAVE FRONTIER」 2022年度の受付開始 (7/15 〆切)

Beyond Next Ventures株式会社(本社:東京都中央区、代表取締役社⻑:伊藤毅、以下「…

イミンアニオン型Smiles転位によるオルトヒドロキシフェニルケチミン合成法の開発

第394回のスポットライトリサーチは、東京農工大学 大学院工学府 応用化学専攻 森研究室の神野 峻輝…

マテリアルズ・インフォマティクスで用いられる統計[超入門]-研究者が0から始めるデータの見方・考え方-

開催日:2022/07/06 申込みはこちら■開催概要近年、少子高齢化、働き手の不足の影…

表面酸化した銅ナノ粒子による低温焼結に成功~銀が主流のプリンテッドエレクトロニクスに、銅という選択肢を提示~

第393回のスポットライトリサーチは、北海道大学 大学院工学院 材料科学専攻 マテリアル設計講座 先…

高分子材料におけるマテリアルズ・インフォマティクスの活用とは?

 申込みはこちら■セミナー概要本動画は、20022年5月18日に開催されたセミナー「高分…

元素のふるさと図鑑

2022年も折り返しに差し掛かりました。2022年は皆さんにとってどんな年になり…

Q&A型ウェビナー カーボンニュートラル実現のためのマイクロ波プロセス 〜ケミカルリサイクル・乾燥・濃縮・焼成・剥離〜

<内容>本ウェビナーでは脱炭素化を実現するための手段として、マイクロ波プロセスをご紹介いたします…

カルボン酸、窒素をトスしてアミノ酸へ

カルボン酸誘導体の不斉アミノ化によりキラルα-アミノ酸の合成法が報告された。カルボン酸をヒドロキシル…

海洋シアノバクテリアから超強力な細胞増殖阻害物質を発見!

第 392回のスポットライトリサーチは、慶應義塾大学大学院 理工学研究科 博士後期課…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP