[スポンサーリンク]

化学者のつぶやき

イナミドを縮合剤とする新規アミド形成法

[スポンサーリンク]

2016年、江西師範大学のJunfeng Zhaoらは、イナミドを縮合剤として用いることで、一切の添加剤を必要とせず、ラセミ化フリーでペプチドを合成することに成功した。単純なアミドやジペプチドの合成だけでなく、ペプチドのセグメント縮合にも応用できる。

“Ynamides as Racemization-Free Coupling Reagents for Amide and Peptide Synthesis”
Long, H.; Silin, X.; Zhenguang, Z.; Yang, Y.; Zhiyuan, P.; Ming, Y.; Changliu, W.; Junfeng, Z.* J. Am. Chem. Soc. 2016, 138, 13135–13138. DOI: 10.1021/jacs.6b07230

問題設定

アミド結合の形成には、カルボン酸を活性化させる形での縮合剤が多く使用されている。しかし、これらの縮合剤を用いる場合、試薬自身や添加剤などに由来する多量の廃棄物が生じるため、原子効率に優れる反応剤が求められている。
イナミンは、高収率・添加剤不要でペプチドを合成できる縮合剤として1964年に報告されていた[1]。しかし、イナミンは熱に不安定で水とも反応し、さらにラセミ化も引き起こしやすいため実用的な縮合剤では無かった[2]。

技術や手法のキモ

イナミンの窒素置換基を電子求引基に変えたイナミドを用いることが鍵であった。本化合物は熱的に安定で、かつ水中でも反応に使用できる。また、電子求引基導入の結果として塩基性も低下しており、ラセミ化を抑制する効果もある。
今回の研究ではMYMsA、MYTsAを最適試薬として見いだしている。2工程の合成法にていずれも簡便に合成できる。

主張の有効性検証

①既存の縮合剤との比較

MYMsA, MYTsAのどちらを使用した場合でも、既存の縮合剤を使用した場合に比べ高収率で反応が進行した。かつ一切のラセミ化が見られていない。

②基質一般性

N末の保護基としてはBoc, Cbz, Fmocのいずれも適用可能である。アミノ酸側鎖に-OH,-SH,-CONH2,NHが含まれていても選択的に反応するため、側鎖の保護は必要ない。ValやAibといった立体障害が大きい基質でも、反応時間を長くすることで高い収率が得られているほか、大スケール(20 mmol)でも収率にはほぼ影響がない。ペプチドのフラグメント縮合にも応用できる。

③反応機構について

脂肪族・芳香族、不飽和カルボン酸に対してMYTsAを混合すると、室温で数時間以内に、高収率で対応するα-アシロキシイナミドが得られる。これらのα-アシロキシイナミドは全て室温で安定に存在した。また、強酸(TfOH)を触媒として加えると反応時間が2.4倍短縮されたという報告[3]がある。
これらの事実をもとに、α-アシロキシイナミド生成・ペプチド結合生成それぞれの段階について、反応機構解析が他研究者によって行われている(下図)[4]。
まずイナミドのプロトン化が起こりイミニウム種が生じ、カルボン酸が生じることでα-アシロキシイナミドが生成する。これがさらにもう一分子のカルボン酸と絡むことでアミド形成反応が進行し、副生成物としてスルホニルイミドが生じる。

論文[4]より引用

議論すべき点

  • AibやValなどの、立体障害の大きい基質でも高い収率を得られている点は特筆すべきだろう。
  • one-potかつ大スケールで反応を行えるため、大量合成にも応用可能。しかし、反応時間が長いのが欠点。
  • 5残基のペプチドであるLeu-Enkephalinの合成を行う場合、数日かかり、収率も70%まで落ちている。ラセミ化リスクを懸念してか活性化箇所をグリシンにしていることも注意点。他の基質をフラグメントカップリングに利用する場合、どれほどラセミ化するかは未知数。

参考文献

  1. Buijle, R.; Viehe, H. G. Angew. Chem., Int. Ed. Engl. 1964, 3, 582. DOI: 10.1002/anie.196405822
  2. Weygand, F.; König, W.; Buyle, R.;Viehe, H. G. Chem. Ber. 1965, 98, 3632. DOI: 10.1002/cber.19650981130
  3. Hu, L.; Zhao, J. Synlett 2017, 28, 1663. DOI: 10.1055/s-0036-1588860
  4. Zhang, S.; Xing, H.; Deng, Z. Org. Biomol. Chem. 2017, 15, 6367. doi:10.1039/C7OB01378G

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 「Python in Excel」が機能リリースされたときのメリ…
  2. NMRのプローブと測定(Bruker編)
  3. 材料開発における生成AIの活用方法
  4. 可視光光触媒でツルツルのベンゼン環をアミノ化する
  5. Appel反応を用いるホスフィンの不斉酸化
  6. 有機合成化学協会誌2021年4月号:共有結合・ゲル化剤・Hove…
  7. 【環境・化学分野/ウェビナー】マイクロ波による次世代製造 (プラ…
  8. 特定の刺激でタンパク質放出速度を制御できるスマート超分子ヒドロゲ…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 研究テーマ変更奮闘記 – PhD留学(前編)
  2. カーボンナノチューブ量産技術を国際会議で発表へ
  3. 【書籍】新版 元素の小辞典
  4. ODOOSをリニューアル!
  5. スクラウプ キノリン合成 Skraup Quinoline Synthesis
  6. ここまで進んだ次世代医薬品―ちょっと未来の薬の科学
  7. 高速原子間力顕微鏡による溶解過程の中間状態の発見
  8. REACH規則の最新動向と対応方法【終了】
  9. ナノ粒子の機能と応用 ?コロイダルシリカを中心に?【終了】
  10. 光照射による有機酸/塩基の発生法:②光塩基発生剤について

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2018年1月
1234567
891011121314
15161718192021
22232425262728
293031  

注目情報

最新記事

カルボン酸β位のC–Hをベターに臭素化できる配位子さん!

カルボン酸のb位C(sp3)–H結合を直接臭素化できるイソキノリン配位子が開発された。イソキノリンに…

【12月開催】第十四回 マツモトファインケミカル技術セミナー   有機金属化合物 オルガチックスの性状、反応性とその用途

■セミナー概要当社ではチタン、ジルコニウム、アルミニウム、ケイ素等の有機金属化合物を“オルガチッ…

保護基の使用を最小限に抑えたペプチド伸長反応の開発

第584回のスポットライトリサーチは、東京大学大学院 薬学系研究科 有機合成化学教室(金井研究室)の…

【ナード研究所】新卒採用情報(2025年卒)

NARDでの業務は、「研究すること」。入社から、30代・40代・50代……

書類選考は3分で決まる!面接に進める人、進めない人

人事担当者は面接に進む人、進まない人をどう判断しているのか?転職活動中の方から、…

期待度⭘!サンドイッチ化合物の新顔「シクロセン」

π共役系配位子と金属が交互に配位しながら環を形成したサンドイッチ化合物の合成が達成された。嵩高い置換…

塩基が肝!シクロヘキセンのcis-1,3-カルボホウ素化反応

ニッケル触媒を用いたシクロヘキセンの位置および立体選択的なカルボホウ素化反応が開発された。用いる塩基…

中国へ行ってきました 西安・上海・北京編①

2015年(もう8年前ですね)、中国に講演旅行に行った際に記事を書きました(実は途中で断念し最後まで…

アゾ重合開始剤の特徴と選び方

ラジカル重合はビニルモノマーなどの重合に用いられる方法で、開始反応、成長反応、停止反応を素反応とする…

先端事例から深掘りする、マテリアルズ・インフォマティクスと計算科学の融合

開催日:2023/12/20 申込みはこちら■開催概要近年、少子高齢化、働き手の不足の影…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP