[スポンサーリンク]

化学者のつぶやき

「引っ張って」光学分割

(冒頭図は論文を参考に作成)

A Mechanochemical Approach to Deracemization
Wiggins, K. M.;  W. Bielawski, C. W.
Angew. Chem. Int. Ed. 2012, 51, 1640 –1643. DOI: 10.1002/anie.201107937

光学異性体の分離は、1849年のパスツールによる酒石酸塩の光学分割から始まり、結晶化・不斉触媒・キラルカラムなど、様々な手法が提案されてきました。2001年に野依良治先生が不斉触媒の開発によりノーベル賞を受賞されているように、光学異性体の分離は現代有機化学における重要課題の1つといえます。

今回は、近年注目を集めるメカノケミストリーを用いて、BINOL(1,1′-ビ-2-ナフトール)のラセミ体を「引っ張る」ことによりS体のみを収率90%、光学純度98%と効率的な光学分割を達成したBielawskiらの報告をご紹介します。

—–

2014年12月23日 追記

本論文の著者、WigginsとBielawskiが発表した論文3報に対して、論文捏造の疑義がかけられています。この論文に対しては、捏造の疑いが公式に発表されたわけではありませんが、疑惑をかけられている研究者2名での類似の研究であることからも、捏造の可能性があります。研究・引用の際にはご注意ください。詳細はChem-Stationで紹介していますので、以下をご参照ください。

テキサス大教授Science論文捏造か?」2014年12月17日 Chem-Station

追記終わり

—–

これまで、ケムステではメカノケミストリー、すなわち力学的エネルギーによる分子の活性化をいくつかご紹介してきました。これらの先行研究では、高分子を引っ張ることで、高分子主鎖中央の分子にエネルギーを伝えて分子変換を行っており、例えばベンゾシクロブテンの開環”逆”クリック反応が達成されてきました。一方、せっかく分子を変換しても高分子鎖が残ったままであるため、実際の反応に適用することが容易ではないなどの問題もありました。

今回の報告においてもこれまでと同様に、ラセミ体BINOLに高分子を取り付け、超音波でBINOLを「引っ張る」ことでR体⇔S体へと変換しています。しかし、これでは一度S体を得ても超音波をかけ続けている間はS体⇔R体への変換が常に続いているため、反応系内をS体だけにすることはできません。しかし、最終的にはS体が収率90%、光学純度98%で回収されています。どうやってS体だけを取り出したのでしょうか…?

Binol2

図1. 超音波と酵素を用いたBINOLの光学分割(図は論文を参考に作成)

 

Bielawskiらは、S体BINOLのエステルを選択的に切断する酵素を用いることでこの問題を解決しています(図1)。S体に変換されたBINOLからエステルでつながっている高分子鎖を切り離すと、高分子鎖を通じて引っ張られることがないため、S体BINOLはこれ以上変換されることはありません。さらに、残りのR体BINOLも、S体に変換されると酵素がエステルを切断していくため、系内のBINOLはどんどんS体へ、つまり酵素を用いることでR体⇔S体の反応がR体⇒S体の反応になります。しかも、S体への変換後には高分子鎖が除去されているため、次の反応へ適用することが可能となります。

Binol3

図2. a) SEC測定結果. 超音波照射前(青), 超音波照射後(赤), 酵素処理のみ(緑). b) CD測定結果. 48時間超音波処理でS体BINOLに近いスペクトルに (図は論文より引用)

上の図2aから、超音波照射後には高分子のサイズがちょうど半分になっていることがわかります(青→赤の変化)。また、超音波処理せず酵素処理だけするとラセミ体なのでS体BINOLを有する高分子は切断されるものの、R体BINOLを有する高分子は切断されずそのままの分子量を保持していることが分かります。また、図2bでは48時間の超音波照射で純粋なS体BINOLに近い光学純度のBINOLが得られることが示されています。

この手法は、S体BINOLだけに作用する酵素を用いているため、他の様々なラセミ分子にすぐ適用できるわけではありません。今回はこの酵素を見つけてきたBielawskiグループの着眼点の勝利といったところでしょうか。しかし、メカノケミストリーに酵素・触媒など他の手法を組み合わせることで、光学分割など、様々な反応に適用できることが示されたといえます。熱に弱い分子の変換など、メカノケミストリーならではの利点もあります。実際、BINOLの異性化には高いエネルギーが必要で、BINOLを250℃で72時間処理しても異性化はほとんど起こりませんが、今回は9℃で48時間超音波処理を行い「引っ張る」ことで光学分割に成功しています。

光学分割に留まらず、最近も様々なメカノケミストリーの応用が報告されており、まだまだ「引っ張る」研究が盛んなようです。未来の研究室では、「よーし、次はS体の合成だから頑張って引っ張るかー」なんていう光景が見られるかもしれません。

The following two tabs change content below.
suiga
高分子合成と高分子合成の話題を中心にご紹介します。基礎研究・応用研究・商品開発それぞれの面白さをお伝えしていきたいです。

関連記事

  1. テルペンを酸化的に”飾り付ける”
  2. 化学者の単語登録テクニック
  3. オペレーションはイノベーションの夢を見るか? その1
  4. 科学史上最悪のスキャンダル?! “Climatega…
  5. リンダウ会議に行ってきた④
  6. 中学生の研究が米国の一流論文誌に掲載された
  7. 2010年日本化学会年会を楽しむ10の方法
  8. 非常に小さな反転障壁を示す有機リン化合物の合成

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. ウラジミール・ゲヴォルギャン Vladimir Gevorgyan
  2. Reaxys無料トライアル実施中!
  3. ジャン=ルック・ブレダス Jean-Luc Bredas
  4. ソモライ教授2008年プリーストリー賞受賞
  5. 5社とも増収 経常利益は過去最高
  6. 有機合成化学の豆知識botを作ってみた
  7. 長井長義 Nagayoshi Nagai
  8. 【書籍】合成化学の新潮流を学ぶ:不活性結合・不活性分子の活性化
  9. 呉羽化学、明るさを保ちながら熱をカットする窓ガラス用素材
  10. テトラキス[3,5-ビス(トリフルオロメチル)フェニル]ほう酸ナトリウム水和物 : Sodium Tetrakis[3,5-bis(trifluoromethyl)phenyl]borate Hydrate

関連商品

注目情報

注目情報

最新記事

有機合成化学協会誌2019年1月号:大環状芳香族分子・多環性芳香族ポリケチド天然物・りん光性デンドリマー・キャビタンド・金属カルベノイド・水素化ジイソブチルアルミニウム

有機合成化学協会が発行する有機合成化学協会誌、2019年1月号がオンライン公開されました。今…

リチウムイオンバッテリーの容量を最大70%まで向上させる技術が開発されている

スマートフォンや電気自動車の普及によって、エネルギー密度が高く充電効率も良いリチウムイオンバッテリー…

学部4年間の教育を振り返る

皆様、いかがお過ごしでしょうか。学部4年生の筆者は院試験も終わり、卒論作成が本格的に始まるまでの束の…

ダイセルが開発した新しいカラム: DCpak PTZ

ダイセルといえば「キラルカラムの雄」として知られており、光学活性化合物を分離するキラルカラム「CHI…

台湾当局、半導体技術の対中漏洩でBASFの技術者6人を逮捕

台湾の内政部(内政省)刑事局は7日、半導体製造に使う特殊な化学品の技術を中国企業に漏洩した営業秘密法…

「低分子医薬品とタンパク質の相互作用の研究」Harvard大学 Woo研より

海外留学記第29回目は、Harvard大学のChiristina Woo研に留学されている天児由佳さ…

Chem-Station Twitter

PAGE TOP