[スポンサーリンク]

化学者のつぶやき

水入りフラーレンの合成

 

”A Single Molecule of Water Encapsulated in Fullerene C60
Kurotobi, K.; Murata, Y. Science 2011, 333, 613. DOI: 10.1126/science.1206376

サッカーボール型分子・フラーレン(C60は興味深い化学的・物理的性質をさまざまに示す、ナノカーボン化学の顔ともいうべき化合物です。より優れたフラーレン誘導体の創製を目指し、その化学修飾法が盛んに研究されてきています。世に知られるほとんどの化学修飾法は表面に何かしらの置換基を生やす手法です(例:ボロン酸を用いる単官能基化法)。

その一方で、中空分子という特性を活かして化学種を中に詰めこんだ「内包型フラーレン」にも興味が持たれています。しかしその合成法は、内包させたい化学種を共存させ、フラーレン合成時における球形成の際に偶然中に取り込まれることを期待するというものでした。

京都大学の小松・村田らによって開発された分子手術法(Molecular Surgery)[1]は、そのような背景にてさっそうと登場しました。化学反応を用いてフラーレンに穴を開け、化学種を詰め混んだ後、逆方向の化学反応によって穴を閉じるという、視覚的にも大変わかり易いやり方です。既存法に比べて高効率で内包フラーレンを合成でき、また入れるものを自由に選べる特長も持ちあわせています。

先日、この分子手術法を用いて合成された水入りフラーレンH2O@C60Science誌に報告されました。

分子手術法の最初の成功例は、水素分子内包フラーレンH2@C60の合成[2]であり、その独創性・効率性・応用性の高さが評価され、見事Science掲載の栄誉を獲得していました。今回の報告は技術を更に洗練・発展させた賜物です。

C60_surgery_3
(画像:Tech-On!)

水分子は水素分子に比べてサイズが大きいため、当然ながら大きな開口部が必要となります。しかし開口部を大きくし過ぎると、せっかく詰めた分子が外に漏れ出てしまうことも懸念されます。また水分子は極性をもっているため、疎水性のC60内部に詰め込む過程はかなり難しくなることも予想されます。

この問題解決を可能としたアイデアは大変に優れたものです。

最大のポイントは、可逆性のある官能基「ヘミアセタール」を組み込んだ開口部をデザインし、合成したことです。これにより、水だけを媒介として開口部の大きさを動的に変化できるようにしたのです。穴が大きくなった瞬間に水分子が入ってくれればそれで良い、という理屈ですね。実際には120℃・9000気圧という過酷な条件が必要となるものの、この見事な工夫によって水分子を定量的に内包させることに成功しています。

C60_surgery_2
2工程の化学変換で穴を閉じた後、一分子だけの水が封入されていることは、各種分析およびX線結晶構造解析によって明らかにされています。構造決定にも一つ上手い工夫がなされています。分子の回転(disorder)による紛れを防ぐべく、π-π相互作用でC60分子を固定できるニッケルポルフィリンと共結晶を作って解析するというアイデアが盛り込まれているのです。結晶構造から、水分子は完全に球の中心に位置していることも分かりました。

(冒頭論文より引用)

(冒頭論文より引用)

フラーレン誘導体としての魅力は勿論のこと、このように疎水性空間に閉じ込められた前例の無い水分子自体の物性にも興味が持たれています。

同じ号のScienceに掲載された「窒素のように振る舞うホウ素」もそうですが、分子を加工し、これまで世界に存在しなかった物質や機能を創りだす――これは化学者の「匠の技」によってのみ実現され得ることです。化学の強みと面白さを改めて感じさせてくれる研究の一つだと思えました。

関連文献

[1] Murata, M.; Murata, Y.; Komatsu, K. Chem. Commun. 2008, 6083. DOI: 10.1039/B811738A
[2] (a) Komatsu, K.; Murata, M.; Murata, Y. Science 2005, 307, 238. DOI:10.1126/science.1106185 (b) 2H2@C70:  Murata, M.; Maeda, S.; Morinaka, Y.; Murata, Y.; Komatsu, K. J. Am. Chem. Soc. 2008, 130, 15800. DOI: 10.1021/ja8076846

関連書籍

 

関連リンク

水素をフラーレンに閉じ込める (有機化学美術館)

京都大学化学研究所 村田・若宮研究室

 

The following two tabs change content below.
cosine

cosine

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。 関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。 素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 構造式を楽に描くコツ!? テクニック紹介
  2. 水素化ナトリウムの酸化反応をブロガー・読者がこぞって追試!?
  3. Dead Endを回避せよ!「全合成・極限からの一手」③
  4. 光照射によって結晶と液体を行き来する蓄熱分子
  5. マダンガミンの網羅的全合成
  6. Wiley社の本が10%割引キャンペーン中~Amazon~
  7. 光分解性シアニン色素をADCのリンカーに組み込む
  8. 水素社会~アンモニアボラン~

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 当量と容器サイズでヒドロアミノアルキル化反応を制御する
  2. 活性ベースタンパク質プロファイリング Activity-Based Protein Profiling
  3. エーザイ 巨大市場、抗ガン剤開発でライバルに先行
  4. 光エネルギーによって二酸化炭素を変換する光触媒の開発
  5. 2014年化学10大ニュース
  6. フェリエ転位 Ferrier Rearrangement
  7. ヘリウム新供給プロジェクト、米エアプロダクツ&ケミカルズ社
  8. ぼくらを苦しめる「MUST (NOT)」の呪縛
  9. ポリフェノールに食品アレルギー予防効果
  10. 大型リチウムイオン電池の基礎知識【終了】

関連商品

注目情報

注目情報

最新記事

固体NMR

固体NMR(Solid State NMR)とは、核磁気共鳴 (NMR) 分光法の一種で固体そのもの…

NMRの基礎知識【測定・解析編】

本シリーズでは、NMRの原理から実例までをできるだけ分かりやすくご紹介したいと思います。前回の【原理…

「人工知能時代」と人間の仕事

デジタル技術の進歩は著しく、特に、人工知能(AI)と呼ばれる機械学習システムの進歩は、世界の労働者の…

特定の刺激でタンパク質放出速度を制御できるスマート超分子ヒドロゲルの開発

第134回のスポットライトリサーチは、京都大学大学院 工学研究科 合成·生物化学専攻 浜地研究室の重…

有機合成化学協会誌2018年1月号:光学活性イミダゾリジン含有ピンサー金属錯体・直截カルコゲン化・インジウム触媒・曲面π構造・タンパク質チオエステル合成

有機合成化学協会が発行する有機合成化学協会誌、2018年1月号が昨日オンライン公開されました。…

アミン化合物をワンポットで簡便に合成 -新規還元的アミノ化触媒-:関東化学

アミン化合物は医薬品、農薬などの生理活性物質をはじめ、ポリマーなどの工業材料に至るまで様々な化学物質…

Chem-Station Twitter

PAGE TOP