[スポンサーリンク]

化学者のつぶやき

水入りフラーレンの合成

[スポンサーリンク]

 

”A Single Molecule of Water Encapsulated in Fullerene C60
Kurotobi, K.; Murata, Y. Science 2011, 333, 613. DOI: 10.1126/science.1206376

サッカーボール型分子・フラーレン(C60は興味深い化学的・物理的性質をさまざまに示す、ナノカーボン化学の顔ともいうべき化合物です。より優れたフラーレン誘導体の創製を目指し、その化学修飾法が盛んに研究されてきています。世に知られるほとんどの化学修飾法は表面に何かしらの置換基を生やす手法です(例:ボロン酸を用いる単官能基化法)。

その一方で、中空分子という特性を活かして化学種を中に詰めこんだ「内包型フラーレン」にも興味が持たれています。しかしその合成法は、内包させたい化学種を共存させ、フラーレン合成時における球形成の際に偶然中に取り込まれることを期待するというものでした。

京都大学の小松・村田らによって開発された分子手術法(Molecular Surgery)[1]は、そのような背景にてさっそうと登場しました。化学反応を用いてフラーレンに穴を開け、化学種を詰め混んだ後、逆方向の化学反応によって穴を閉じるという、視覚的にも大変わかり易いやり方です。既存法に比べて高効率で内包フラーレンを合成でき、また入れるものを自由に選べる特長も持ちあわせています。

先日、この分子手術法を用いて合成された水入りフラーレンH2O@C60Science誌に報告されました。

分子手術法の最初の成功例は、水素分子内包フラーレンH2@C60の合成[2]であり、その独創性・効率性・応用性の高さが評価され、見事Science掲載の栄誉を獲得していました。今回の報告は技術を更に洗練・発展させた賜物です。

C60_surgery_3
(画像:Tech-On!)

水分子は水素分子に比べてサイズが大きいため、当然ながら大きな開口部が必要となります。しかし開口部を大きくし過ぎると、せっかく詰めた分子が外に漏れ出てしまうことも懸念されます。また水分子は極性をもっているため、疎水性のC60内部に詰め込む過程はかなり難しくなることも予想されます。

この問題解決を可能としたアイデアは大変に優れたものです。

最大のポイントは、可逆性のある官能基「ヘミアセタール」を組み込んだ開口部をデザインし、合成したことです。これにより、水だけを媒介として開口部の大きさを動的に変化できるようにしたのです。穴が大きくなった瞬間に水分子が入ってくれればそれで良い、という理屈ですね。実際には120℃・9000気圧という過酷な条件が必要となるものの、この見事な工夫によって水分子を定量的に内包させることに成功しています。

C60_surgery_2
2工程の化学変換で穴を閉じた後、一分子だけの水が封入されていることは、各種分析およびX線結晶構造解析によって明らかにされています。構造決定にも一つ上手い工夫がなされています。分子の回転(disorder)による紛れを防ぐべく、π-π相互作用でC60分子を固定できるニッケルポルフィリンと共結晶を作って解析するというアイデアが盛り込まれているのです。結晶構造から、水分子は完全に球の中心に位置していることも分かりました。

(冒頭論文より引用)

(冒頭論文より引用)

フラーレン誘導体としての魅力は勿論のこと、このように疎水性空間に閉じ込められた前例の無い水分子自体の物性にも興味が持たれています。

同じ号のScienceに掲載された「窒素のように振る舞うホウ素」もそうですが、分子を加工し、これまで世界に存在しなかった物質や機能を創りだす――これは化学者の「匠の技」によってのみ実現され得ることです。化学の強みと面白さを改めて感じさせてくれる研究の一つだと思えました。

関連文献

[1] Murata, M.; Murata, Y.; Komatsu, K. Chem. Commun. 2008, 6083. DOI: 10.1039/B811738A
[2] (a) Komatsu, K.; Murata, M.; Murata, Y. Science 2005, 307, 238. DOI:10.1126/science.1106185 (b) 2H2@C70:  Murata, M.; Maeda, S.; Morinaka, Y.; Murata, Y.; Komatsu, K. J. Am. Chem. Soc. 2008, 130, 15800. DOI: 10.1021/ja8076846

関連書籍

 

関連リンク

水素をフラーレンに閉じ込める (有機化学美術館)

京都大学化学研究所 村田・若宮研究室

 

cosine

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. サイコロを作ろう!
  2. 大環状ヘテロ環の合成から抗がん剤開発へ
  3. 高専の化学科ってどんなところ? -その 2-
  4. カラムはオープン?フラッシュ?それとも??
  5. 化学者のためのエレクトロニクス講座~無線の歴史編~
  6. 「低分子医薬品とタンパク質の相互作用の研究」Harvard大学 …
  7. 標的指向、多様性指向合成を目指した反応
  8. 可視光で働く新しい光触媒を創出 -常識を覆す複合アニオンの新材料…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 宝塚市立病院で職員が「シックハウス症候群」に…労基署が排気設備が不十分と是正勧告
  2. 【追悼企画】カナダのライジングスター逝く
  3. ヴィ·ドン Vy M. Dong
  4. 高校教科書に研究が載ったはなし
  5. 2007年度ノーベル化学賞を予想!(1)
  6. 理化学研究所、植物の「硫黄代謝」を調節する転写因子を発見
  7. HOW TO 分子シミュレーション―分子動力学法、モンテカルロ法、ブラウン動力学法、散逸粒子動力学法
  8. ロナルド・ブレズロウ賞・受賞者一覧
  9. ネイチャー論文で絶対立体配置の”誤審”
  10. 有機化学を俯瞰する -有機化学の誕生から21世紀まで–【後編】

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

広瀬すずさんがTikTok動画に初挑戦!「#AGCチャレンジ」を開始

TikTok For BusinessとAGC株式会社は、AGCをより多くの人に知っていただくことを…

新規性喪失の例外規定とは?

bergです。今回は論文投稿・学会発表と特許出願を同時に行うための新規性喪失の例外規定の適用手続きに…

新車の香りは「発がん性物質」の香り、1日20分嗅ぐだけで発がんリスクが高まる可能性

「新車の香り」には、がんや生殖障害、子どもの先天性欠損症などを引き起こす可能性があるベンゼンやホルム…

溶液を流すだけで誰でも簡単に高分子を合成できるリサイクル可能な不均一系ラジカル発生剤の開発

第 295 回のスポットライトリサーチは東京大学豊田研究室の博士課程 1 年 岡美奈実さんと修士課程…

Carl Boschの人生 その9

Tshozoです。書いてると色々膨らんで収集がつかなくなりますね。ということで前回の続き。W…

創薬・医療系ベンチャー支援プログラム”BlockbusterTOKYO” ビジネスプラン発表会を開催!

東京都が主催し、Beyond Next Ventures株式会社が運営するBlockbuster T…

酸化反応を駆使した(-)-deoxoapodineの世界最短合成

第294回のスポットライトリサーチは、吉田慶 博士にお願いしました。今回取り上げる研究は有機…

特許取得のための手続き

bergです。本記事では特許出願に必要な手続きについてかいつまんでご紹介します。皆さんの研究もひょっ…

Chem-Station Twitter

PAGE TOP