[スポンサーリンク]

化学者のつぶやき

水入りフラーレンの合成

[スポンサーリンク]

 

”A Single Molecule of Water Encapsulated in Fullerene C60
Kurotobi, K.; Murata, Y. Science 2011, 333, 613. DOI: 10.1126/science.1206376

サッカーボール型分子・フラーレン(C60は興味深い化学的・物理的性質をさまざまに示す、ナノカーボン化学の顔ともいうべき化合物です。より優れたフラーレン誘導体の創製を目指し、その化学修飾法が盛んに研究されてきています。世に知られるほとんどの化学修飾法は表面に何かしらの置換基を生やす手法です(例:ボロン酸を用いる単官能基化法)。

その一方で、中空分子という特性を活かして化学種を中に詰めこんだ「内包型フラーレン」にも興味が持たれています。しかしその合成法は、内包させたい化学種を共存させ、フラーレン合成時における球形成の際に偶然中に取り込まれることを期待するというものでした。

京都大学の小松・村田らによって開発された分子手術法(Molecular Surgery)[1]は、そのような背景にてさっそうと登場しました。化学反応を用いてフラーレンに穴を開け、化学種を詰め混んだ後、逆方向の化学反応によって穴を閉じるという、視覚的にも大変わかり易いやり方です。既存法に比べて高効率で内包フラーレンを合成でき、また入れるものを自由に選べる特長も持ちあわせています。

先日、この分子手術法を用いて合成された水入りフラーレンH2O@C60Science誌に報告されました。

分子手術法の最初の成功例は、水素分子内包フラーレンH2@C60の合成[2]であり、その独創性・効率性・応用性の高さが評価され、見事Science掲載の栄誉を獲得していました。今回の報告は技術を更に洗練・発展させた賜物です。

C60_surgery_3
(画像:Tech-On!)

水分子は水素分子に比べてサイズが大きいため、当然ながら大きな開口部が必要となります。しかし開口部を大きくし過ぎると、せっかく詰めた分子が外に漏れ出てしまうことも懸念されます。また水分子は極性をもっているため、疎水性のC60内部に詰め込む過程はかなり難しくなることも予想されます。

この問題解決を可能としたアイデアは大変に優れたものです。

最大のポイントは、可逆性のある官能基「ヘミアセタール」を組み込んだ開口部をデザインし、合成したことです。これにより、水だけを媒介として開口部の大きさを動的に変化できるようにしたのです。穴が大きくなった瞬間に水分子が入ってくれればそれで良い、という理屈ですね。実際には120℃・9000気圧という過酷な条件が必要となるものの、この見事な工夫によって水分子を定量的に内包させることに成功しています。

C60_surgery_2
2工程の化学変換で穴を閉じた後、一分子だけの水が封入されていることは、各種分析およびX線結晶構造解析によって明らかにされています。構造決定にも一つ上手い工夫がなされています。分子の回転(disorder)による紛れを防ぐべく、π-π相互作用でC60分子を固定できるニッケルポルフィリンと共結晶を作って解析するというアイデアが盛り込まれているのです。結晶構造から、水分子は完全に球の中心に位置していることも分かりました。

(冒頭論文より引用)

(冒頭論文より引用)

フラーレン誘導体としての魅力は勿論のこと、このように疎水性空間に閉じ込められた前例の無い水分子自体の物性にも興味が持たれています。

同じ号のScienceに掲載された「窒素のように振る舞うホウ素」もそうですが、分子を加工し、これまで世界に存在しなかった物質や機能を創りだす――これは化学者の「匠の技」によってのみ実現され得ることです。化学の強みと面白さを改めて感じさせてくれる研究の一つだと思えました。

関連文献

[1] Murata, M.; Murata, Y.; Komatsu, K. Chem. Commun. 2008, 6083. DOI: 10.1039/B811738A
[2] (a) Komatsu, K.; Murata, M.; Murata, Y. Science 2005, 307, 238. DOI:10.1126/science.1106185 (b) 2H2@C70:  Murata, M.; Maeda, S.; Morinaka, Y.; Murata, Y.; Komatsu, K. J. Am. Chem. Soc. 2008, 130, 15800. DOI: 10.1021/ja8076846

関連書籍

 

関連リンク

水素をフラーレンに閉じ込める (有機化学美術館)

京都大学化学研究所 村田・若宮研究室

 

cosine

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 100年前のノーベル化学賞ーフリッツ・ハーバーー
  2. 自宅での仕事に飽きたらプレゼン動画を見よう
  3. 留学せずに英語をマスターできるかやってみた(2年目)
  4. 2008年ノーベル化学賞『緑色蛍光タンパクの発見と応用』
  5. サムスン先端研恐るべし -大面積プリンタブルグラフェンの合成-
  6. アノードカップリングにより完遂したテバインの不斉全合成
  7. 尿から薬?! ~意外な由来の医薬品~ その1
  8. 人工タンパク質ナノブロックにより自己組織化ナノ構造を創る

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 子供と一緒にネットで化学実験を楽しもう!
  2. ビス(トリ-tert-ブチルホスフィン)パラジウム(0):Bis(tri-tert-butylphosphine)palladium(0)
  3. 有機反応を俯瞰する ー付加脱離
  4. 高速原子間力顕微鏡による溶解過程の中間状態の発見
  5. チャールズ・スターク・ドレイパー賞―受賞者一覧
  6. 112番元素が正式に周期表の仲間入り
  7. ダイハツなど、福島第一原発廃炉に向けハニカム型水素安全触媒を開発 自動車用を応用
  8. 有機化合物で情報を記録する未来は来るか
  9. 化学英語論文/レポート執筆に役立つPCツール・決定版
  10. アメリカで医者にかかる

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

スポットライトリサーチムービー:動画であなたの研究を紹介します

5年前、ケムステ15周年の際に新たな試みとしてはじめたコンテンツ「スポットライトリサーチ」。…

第110回―「動的配座を制御する化学」Jonathan Clayden教授

第110回の海外化学者インタビューは、ジョナサン・クレイデン教授です。マンチェスター大学化学科(訳注…

化学研究で役に立つデータ解析入門:エクセルでも立派な解析ができるぞ編

化学分野でのAIを使った研究が多数報告されていてデータ解析は流行のトピックとなっていますが、専門外か…

高分子化学をふまえて「神経のような動きをする」電子素子をつくる

第267回のスポットライトリサーチは、東北大学大学院工学研究科 バイオ工学専攻 三ツ石研究室 助教の…

アルケンのエナンチオ選択的ヒドロアリール化反応

パラジウム触媒を用いたアルケンの還元的Heck型ヒドロアリール化反応が開発された。容易に着脱可能なキ…

第109回―「サステイナブルな高分子材料の創製」Andrew Dove教授

第109回の海外化学者インタビューは、アンドリュー・ダヴ教授です。ワーウィック大学化学科に所属(訳注…

蛍光異方性 Fluorescence Anisotropy

蛍光異方性(fluorescence anisotropy)とは溶液中で回転する分子の回転速…

(–)-Spirochensilide Aの不斉全合成

(–)-Spirochensilide Aの初の不斉全合成が達成された。タングステンを用いたシクロプ…

Chem-Station Twitter

PAGE TOP