[スポンサーリンク]

化学者のつぶやき

水入りフラーレンの合成

[スポンサーリンク]

 

”A Single Molecule of Water Encapsulated in Fullerene C60
Kurotobi, K.; Murata, Y. Science 2011, 333, 613. DOI: 10.1126/science.1206376

サッカーボール型分子・フラーレン(C60は興味深い化学的・物理的性質をさまざまに示す、ナノカーボン化学の顔ともいうべき化合物です。より優れたフラーレン誘導体の創製を目指し、その化学修飾法が盛んに研究されてきています。世に知られるほとんどの化学修飾法は表面に何かしらの置換基を生やす手法です(例:ボロン酸を用いる単官能基化法)。

その一方で、中空分子という特性を活かして化学種を中に詰めこんだ「内包型フラーレン」にも興味が持たれています。しかしその合成法は、内包させたい化学種を共存させ、フラーレン合成時における球形成の際に偶然中に取り込まれることを期待するというものでした。

京都大学の小松・村田らによって開発された分子手術法(Molecular Surgery)[1]は、そのような背景にてさっそうと登場しました。化学反応を用いてフラーレンに穴を開け、化学種を詰め混んだ後、逆方向の化学反応によって穴を閉じるという、視覚的にも大変わかり易いやり方です。既存法に比べて高効率で内包フラーレンを合成でき、また入れるものを自由に選べる特長も持ちあわせています。

先日、この分子手術法を用いて合成された水入りフラーレンH2O@C60Science誌に報告されました。

分子手術法の最初の成功例は、水素分子内包フラーレンH2@C60の合成[2]であり、その独創性・効率性・応用性の高さが評価され、見事Science掲載の栄誉を獲得していました。今回の報告は技術を更に洗練・発展させた賜物です。

C60_surgery_3
(画像:Tech-On!)

水分子は水素分子に比べてサイズが大きいため、当然ながら大きな開口部が必要となります。しかし開口部を大きくし過ぎると、せっかく詰めた分子が外に漏れ出てしまうことも懸念されます。また水分子は極性をもっているため、疎水性のC60内部に詰め込む過程はかなり難しくなることも予想されます。

この問題解決を可能としたアイデアは大変に優れたものです。

最大のポイントは、可逆性のある官能基「ヘミアセタール」を組み込んだ開口部をデザインし、合成したことです。これにより、水だけを媒介として開口部の大きさを動的に変化できるようにしたのです。穴が大きくなった瞬間に水分子が入ってくれればそれで良い、という理屈ですね。実際には120℃・9000気圧という過酷な条件が必要となるものの、この見事な工夫によって水分子を定量的に内包させることに成功しています。

C60_surgery_2
2工程の化学変換で穴を閉じた後、一分子だけの水が封入されていることは、各種分析およびX線結晶構造解析によって明らかにされています。構造決定にも一つ上手い工夫がなされています。分子の回転(disorder)による紛れを防ぐべく、π-π相互作用でC60分子を固定できるニッケルポルフィリンと共結晶を作って解析するというアイデアが盛り込まれているのです。結晶構造から、水分子は完全に球の中心に位置していることも分かりました。

(冒頭論文より引用)

(冒頭論文より引用)

フラーレン誘導体としての魅力は勿論のこと、このように疎水性空間に閉じ込められた前例の無い水分子自体の物性にも興味が持たれています。

同じ号のScienceに掲載された「窒素のように振る舞うホウ素」もそうですが、分子を加工し、これまで世界に存在しなかった物質や機能を創りだす――これは化学者の「匠の技」によってのみ実現され得ることです。化学の強みと面白さを改めて感じさせてくれる研究の一つだと思えました。

関連文献

[1] Murata, M.; Murata, Y.; Komatsu, K. Chem. Commun. 2008, 6083. DOI: 10.1039/B811738A
[2] (a) Komatsu, K.; Murata, M.; Murata, Y. Science 2005, 307, 238. DOI:10.1126/science.1106185 (b) 2H2@C70:  Murata, M.; Maeda, S.; Morinaka, Y.; Murata, Y.; Komatsu, K. J. Am. Chem. Soc. 2008, 130, 15800. DOI: 10.1021/ja8076846

関連書籍

 

関連リンク

水素をフラーレンに閉じ込める (有機化学美術館)

京都大学化学研究所 村田・若宮研究室

 

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 「ねるねるねるね」はなぜ色が変わって膨らむのか?
  2. MILAB ライター募集
  3. ケムステイブニングミキサー2017へ参加しよう!
  4. 4つの性がある小鳥と超遺伝子
  5. テルペンを酸化的に”飾り付ける”
  6. 図に最適なフォントは何か?
  7. とある社長の提言について ~日本合成ゴムとJSR~
  8. 【書籍】『これから論文を書く若者のために』

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. ナザロフ環化 Nazarov Cyclization
  2. お”カネ”持ちな会社たち-1
  3. 複雑分子を生み出す脱水素型ディールス・アルダー反応
  4. 有機合成化学協会誌2020年7月号:APEX反応・テトラアザ[8]サーキュレン・8族金属錯体・フッ素化アミノ酸・フォトアフィニティーラベル
  5. プロリン ぷろりん proline
  6. 第14回「らせん」分子の建築家ー八島栄次教授
  7. 有機化学クロスワードパズル
  8. 【日本精化】化粧品・医薬品の原料開発~「キレイ」のチカラでみんなを笑顔に~
  9. 特許庁「グリーン早期審査・早期審理」の試行開始
  10. 一重項酸素 Singlet Oxygen

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2011年8月
1234567
891011121314
15161718192021
22232425262728
293031  

注目情報

最新記事

有機合成化学協会誌2024年6月号:四塩化チタン・選択的フッ素化・環境調和型反応・インデン・インダセン・環状ペプチド

有機合成化学協会が発行する有機合成化学協会誌、2024年6月号がオンライン公開されています。…

【6月開催】 【第二期 マツモトファインケミカル技術セミナー開催】 題目:有機金属化合物 オルガチックスを用いた架橋剤としての利用(溶剤系)

■セミナー概要当社ではチタン、ジルコニウム、アルミニウム、ケイ素等の有機金属化合物を“オルガチッ…

マテリアルズ・インフォマティクスの推進成功事例 -なぜあの企業は最短でMI推進を成功させたのか?-

開催日:2024/06/18 申込みはこちら■開催概要近年、少子高齢化、働き手の不足の影…

N-オキシドの性質と創薬における活用

N-オキシドは一部の天然物に含まれ、食品・医薬品などの代謝物にも見られるほか、医…

未来を切り拓く創薬DX:多角的な視点から探る最新トレンド

申込みはこちら次世代の創薬研究をリードするために、デジタルトランスフォーメーション(DX…

ファラデーのつくった世界!:−ロウソクの科学が歴史を変えた

こんにちは、Spectol21です!ノーベル賞受賞の吉野彰先生が、吉野先生の研究者と…

接着系材料におけるmiHub活用事例とCSサポートのご紹介

開催日:2024/06/12 申込みはこちら■開催概要近年、少子高齢化、働き手の不足の影…

水素原子一個で強力な触媒をケージング ――アルツハイマー病関連のアミロイドを低分子で副作用を抑えて分解する――

第 619 回のスポットライトリサーチは、東京大学大学院 薬学系研究科 有機合成化学…

ミツバチに付くダニに効く化学物質の研究開発のはなし

今回は東京大学大学院有機化学研究室 滝川 浩郷先生、小倉 由資先生が主導されている研究内容につき…

化学結合の常識が変わる可能性!形成や切断よりも「回転」プロセスが実は難しい有機反応

第 617 回のスポットライトリサーチは、慶應義塾大学大学院 理工学研究科 有機…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP