[スポンサーリンク]

化学者のつぶやき

水入りフラーレンの合成

[スポンサーリンク]

 

”A Single Molecule of Water Encapsulated in Fullerene C60
Kurotobi, K.; Murata, Y. Science 2011, 333, 613. DOI: 10.1126/science.1206376

サッカーボール型分子・フラーレン(C60は興味深い化学的・物理的性質をさまざまに示す、ナノカーボン化学の顔ともいうべき化合物です。より優れたフラーレン誘導体の創製を目指し、その化学修飾法が盛んに研究されてきています。世に知られるほとんどの化学修飾法は表面に何かしらの置換基を生やす手法です(例:ボロン酸を用いる単官能基化法)。

その一方で、中空分子という特性を活かして化学種を中に詰めこんだ「内包型フラーレン」にも興味が持たれています。しかしその合成法は、内包させたい化学種を共存させ、フラーレン合成時における球形成の際に偶然中に取り込まれることを期待するというものでした。

京都大学の小松・村田らによって開発された分子手術法(Molecular Surgery)[1]は、そのような背景にてさっそうと登場しました。化学反応を用いてフラーレンに穴を開け、化学種を詰め混んだ後、逆方向の化学反応によって穴を閉じるという、視覚的にも大変わかり易いやり方です。既存法に比べて高効率で内包フラーレンを合成でき、また入れるものを自由に選べる特長も持ちあわせています。

先日、この分子手術法を用いて合成された水入りフラーレンH2O@C60Science誌に報告されました。

分子手術法の最初の成功例は、水素分子内包フラーレンH2@C60の合成[2]であり、その独創性・効率性・応用性の高さが評価され、見事Science掲載の栄誉を獲得していました。今回の報告は技術を更に洗練・発展させた賜物です。

C60_surgery_3
(画像:Tech-On!)

水分子は水素分子に比べてサイズが大きいため、当然ながら大きな開口部が必要となります。しかし開口部を大きくし過ぎると、せっかく詰めた分子が外に漏れ出てしまうことも懸念されます。また水分子は極性をもっているため、疎水性のC60内部に詰め込む過程はかなり難しくなることも予想されます。

この問題解決を可能としたアイデアは大変に優れたものです。

最大のポイントは、可逆性のある官能基「ヘミアセタール」を組み込んだ開口部をデザインし、合成したことです。これにより、水だけを媒介として開口部の大きさを動的に変化できるようにしたのです。穴が大きくなった瞬間に水分子が入ってくれればそれで良い、という理屈ですね。実際には120℃・9000気圧という過酷な条件が必要となるものの、この見事な工夫によって水分子を定量的に内包させることに成功しています。

C60_surgery_2
2工程の化学変換で穴を閉じた後、一分子だけの水が封入されていることは、各種分析およびX線結晶構造解析によって明らかにされています。構造決定にも一つ上手い工夫がなされています。分子の回転(disorder)による紛れを防ぐべく、π-π相互作用でC60分子を固定できるニッケルポルフィリンと共結晶を作って解析するというアイデアが盛り込まれているのです。結晶構造から、水分子は完全に球の中心に位置していることも分かりました。

(冒頭論文より引用)

(冒頭論文より引用)

フラーレン誘導体としての魅力は勿論のこと、このように疎水性空間に閉じ込められた前例の無い水分子自体の物性にも興味が持たれています。

同じ号のScienceに掲載された「窒素のように振る舞うホウ素」もそうですが、分子を加工し、これまで世界に存在しなかった物質や機能を創りだす――これは化学者の「匠の技」によってのみ実現され得ることです。化学の強みと面白さを改めて感じさせてくれる研究の一つだと思えました。

関連文献

[1] Murata, M.; Murata, Y.; Komatsu, K. Chem. Commun. 2008, 6083. DOI: 10.1039/B811738A
[2] (a) Komatsu, K.; Murata, M.; Murata, Y. Science 2005, 307, 238. DOI:10.1126/science.1106185 (b) 2H2@C70:  Murata, M.; Maeda, S.; Morinaka, Y.; Murata, Y.; Komatsu, K. J. Am. Chem. Soc. 2008, 130, 15800. DOI: 10.1021/ja8076846

関連書籍

 

関連リンク

水素をフラーレンに閉じ込める (有機化学美術館)

京都大学化学研究所 村田・若宮研究室

 

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 研究職の転職で求められる「面白い人材」
  2. 引っ張ると白色蛍光を示すゴム材料
  3. 第19回ケムステVシンポ「化学者だって起業するっつーの」を開催し…
  4. ビアリールのアリール交換なんてアリエルの!?
  5. 安全性・耐久性・高活性を兼ね備えた次世代型スマート触媒の開発
  6. 茨城の女子高生が快挙!
  7. 奇妙奇天烈!植物共生菌から「8の字」型の環を持つ謎の糖が発見
  8. Carl Boschの人生 その7

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. Reaxys Prize 2013ファイナリスト45名発表!
  2. ケトンを配向基として用いるsp3 C-Hフッ素化反応
  3. 表現型スクリーニング Phenotypic Screening
  4. 石テレ賞、山下さんら3人
  5. Horner-Emmons 試薬
  6. サリドマイドが骨髄腫治療薬として米国で承認
  7. オルトチタン酸テトライソプロピル:Tetraisopropyl Orthotitanate
  8. 私達の時間スケールでみても、ガラスは固体ではなかった − 7年前に分からなかった問題を解決 −
  9. ボロン酸エステル/ヒドラゾンの協働が実現する強固な細胞Click反応
  10. 二重芳香族性を示す化合物の合成に成功!

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2011年8月
1234567
891011121314
15161718192021
22232425262728
293031  

注目情報

注目情報

最新記事

イミンアニオン型Smiles転位によるオルトヒドロキシフェニルケチミン合成法の開発

第394回のスポットライトリサーチは、東京農工大学 大学院工学府 応用化学専攻 森研究室の神野 峻輝…

マテリアルズ・インフォマティクスで用いられる統計[超入門]-研究者が0から始めるデータの見方・考え方-

開催日:2022/07/06 申込みはこちら■開催概要近年、少子高齢化、働き手の不足の影…

表面酸化した銅ナノ粒子による低温焼結に成功~銀が主流のプリンテッドエレクトロニクスに、銅という選択肢を提示~

第393回のスポットライトリサーチは、北海道大学 大学院工学院 材料科学専攻 マテリアル設計講座 先…

高分子材料におけるマテリアルズ・インフォマティクスの活用とは?

 申込みはこちら■セミナー概要本動画は、20022年5月18日に開催されたセミナー「高分…

元素のふるさと図鑑

2022年も折り返しに差し掛かりました。2022年は皆さんにとってどんな年になり…

Q&A型ウェビナー カーボンニュートラル実現のためのマイクロ波プロセス 〜ケミカルリサイクル・乾燥・濃縮・焼成・剥離〜

<内容>本ウェビナーでは脱炭素化を実現するための手段として、マイクロ波プロセスをご紹介いたします…

カルボン酸、窒素をトスしてアミノ酸へ

カルボン酸誘導体の不斉アミノ化によりキラルα-アミノ酸の合成法が報告された。カルボン酸をヒドロキシル…

海洋シアノバクテリアから超強力な細胞増殖阻害物質を発見!

第 392回のスポットライトリサーチは、慶應義塾大学大学院 理工学研究科 博士後期課…

ポンコツ博士の海外奮闘録⑧〜博士,鍵反応を仕込む②〜

ポンコツシリーズ一覧国内編:1話・2話・3話国内外伝:1話・2話・留学TiPs海外編:1…

給電せずに電気化学反応を駆動 ~環境にやさしい手法として期待、極限環境での利用も~

第391回のスポットライトリサーチは、東京工業大学物質理工学院応用化学系 稲木研究室の岩井 優 (い…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP