[スポンサーリンク]

一般的な話題

夏のお肌に。ファンデーションの化学

[スポンサーリンク]

夏です!夏休みですね!海水浴、プール、登山、お祭り、花火大会などなど楽しい場所に出かける機会も多いかと思います。

私は離島巡りが好きなので先月には礼文島・利尻島を旅行してきました。日本最狂と呼ばれるユースホステルに泊まり「愛とロマンの逆8時間コース」に参加した際、直射日光に文字通り長時間さらされて真っ赤に日焼けしてボロボロに剥け、大変なことになりました。元々色素が薄く日にうまく焼けにくい体質なので、少しは肌を気にすべきだったのかもしれません。

読者の中には常日頃からきちんとスキンケアに気を遣っている方がいることでしょう。前置きが長くなりましたが、今回は女子向けにお肌に関するトピック(?)、ファンデーションの化学について書いてみたいと思います。

ファンデーションの種類

ファンデーションとはご存じの通り、顔に塗ることでシミ・そばかすや小皺などを覆い隠し、きれいな肌に見せるための化粧品のことです。パウダータイプ、油性タイプ、乳化タイプの大きく3つに分類することができます。

ファンデーションと聞いて真っ先に想像するであろうパウダータイプは名前の通り、粉体(顔料)と少量の油剤からできています。粉体といってもただの粉ではなく、化学の技術がぎっしり詰まったハイテク(!?)素材です。現在よく見られる、粉体をそのまま押し固めて作ったパウダーファンデーションを世界で初めて作ったのは、日本のKOSEです。(コーセー世界初物語|コーセー研究所

油性タイプはスティックファンデーションなどに相当し、名前の通り油剤を多く含みます。乳化タイプは名前の通りエマルションが用いられています。用途により水中油滴(O/W型)・油中水滴(W/O型)の両方が売られており、それぞれの特徴をもちます。リキッドファンデーションやクリームファンデーションがこれらに相当します。

残念ながら(?)私はファンデーションを使用しないため、使い心地などの違いはわかりません。しかし、表面エネルギーなど化学の観点からは、パウダータイプは皮脂が濡れ広がりにくいためテカりにくい、油性タイプは汗で落ちにくい(しかし皮脂には流されやすい)など、はっきりとした違いがあります。

ファンデーションと濡れ:撥水・撥油性の制御

夏場のファンデーションで大切なのは、持続性でしょう。ファンデーションには、肌表面への入射光を制御して肌のシミやシワなどを目立たなくする効果がありますが、ただの粉を顔に塗っただけでは汗や皮脂であっという間に落ちてしまいます。このような事態を防ぐために大事なのが「濡れ」に関する技術です。[1] パウダータイプについて書きたいと思います。

夏にかきやすい汗の主成分は水です。ファンデーションが汗で落ちないようにするためには、顔料に撥水性を付与する必要があります。撥水表面を付加する研究において、もっともよく用いられる方法はシロキサン結合(Si-O-Si)を主鎖にもつ高分子であるシリコーン(側鎖として主にメチル基をもつポリシロキサン)によるコーティングです。パウダータイプにおいては、顔料表面をメチルハイドロゲンポリシロキサン(-(H(CH3)SiO)n-)などでコーティングすることにより撥水性をもたせることができます。

肌からは汗など水分の他に、皮脂、つまり油分も分泌されます。皮脂によってファンデーションが落ちないようにするためには、撥油性をもたせることが必要です。撥水性を付与するために用いたシリコーンには撥油性がほとんどありません。そこで、表面エネルギーが低いフッ素化合物を用いて顔料が表面修飾されます。長鎖のパーフルオロアルキル基(CF3(CF2)n−)が付くように表面処理することで、高い撥水・撥油性をもたせることができます。テフロンでコーティングされたフライパンが水や油をよく撥くのと同じイメージです。しかし、撥油処理をしすぎると顔料同士を油剤で混ぜ合わせることができなくなるため、最適化する必要があります。

顔料の表面組成だけでなく、そのものの物理形状も大切です。ハスの葉や昆虫の眼などのように、細かい凹凸面上では水や油がよく撥かれる性質が知られています。[2, 3] パウダーファンデーションも顔料に凹凸性をもたせることによって、より撥水・撥油性を長持ちさせることができます。

顔料同士を混ぜ合わせる油剤にも、撥水・撥油性をもたせて持続性を高めるため、フッ素変性シリコーン(側鎖の炭化水素をフッ化炭素に一部置き換えたもの)などが用いられているようです。とにかくいろんな場面を想定して、濡れに関する設計がなされています。

lotus

ファンデーションを定着させるポリマー

汗をタオルで拭いたりする際の摩擦で簡単に落ちてしまうようでは、ファンデーションは使い物になりません。そうした環境に対する効果を長持ちさせるため、ファンデーションにはバインダーとして樹脂やポリマーが含まれており、皮膜を形成するように設計されています。[1]

ここでも、持続性や顔料との混合のためには撥水・撥油性の制御が大切で、フッ素化シリコーン樹脂やシリコーンで修飾した疎水化多糖などが開発されています。しかしこの場合、接着のためにやシラノール基(Si−OH)やヒドロキシ基(−OH)などの親水基も残してあるようです。

また、あまりに強力な皮膜を形成してしまうと逆に落としにくくなってしまうため、最適解を求めてさまざまな工夫がなされているようです。

日用品にもさりげなくハイテク素材がたくさん

毎日何気なく使われるファンデーションですが、肌に直接触れるための安全性という厳しい条件の中で、さまざまな観点から検討・設計されたハイテク素材です。濡れの他にも、肌をきれいに見せるための光の散乱(ソフトフォーカス効果)や紫外線から肌を守るUVカット、粒径を小さく揃えることによる肌触り向上などいろんな機能が盛り込まれています。

私たちの身の回りには、普段気付くことがない技術がつぎ込まれた製品がたくさん存在します。ファンデーションを塗るためのスポンジ・パフだって、自動車部品などに使われる発泡材料を手がけるメーカーが培ってきた技術を利用して作られています。日用品に使われている化学の最新技術を、夏休みの自由研究として調べてみると楽しめるかもしれません。

化粧品に関しては、化学の基礎知識に基づいていない思い込みを披露しているだけの本やホームページも数多く存在するため、きちんと検討して理解していけば正しい知識を見分ける目も養うことができます。普段使っている化粧品が実はスゴい素材なんだと気付くことで女性研究者が増え、男性にはできない発想から新しい化成品が出てくればいいなとも思っています。

[amazonjs asin=”4062572842″ locale=”JP” title=”理系志望のための高校生活ガイド―理系をめざしたら何をすればいいのか? (ブルーバックス)”][amazonjs asin=”4062573075″ locale=”JP” title=”理系の女の生き方ガイド―女性研究者に学ぶ自己実現法 (ブルーバックス)”]

参考文献

  1. “撥水・撥油の技術と材料 (新材料・新素材シリーズ)”, 辻井 薫 監修, シーエムシー出版 (2009).
  2. “Purity of the sacred lotus, or escape from contamination in biological surfaces”, W. Barthlott, C. Neinhuis, Planta, 202, 1 (1997).  DOI: 10.1007/s004250050096
  3. “Recent developments in bio-inspired special wettability”, K. Liu, X.Yao, L. Jiang, Chem. Soc. Rev., 39, 3240 (2010).  DOI: 10.1039/B917112F
Avatar photo

GEN

投稿者の記事一覧

大学JK->国研研究者。材料作ったり卓上CNCミリングマシンで器具作ったり装置カスタマイズしたり共働ロボットで遊んだりしています。ピース写真付インタビューが化学の高校教科書に掲載されました。

関連記事

  1. 27万種類のビルディングブロックが購入できる!?
  2. アルコールを空気で酸化する!
  3. 【朗報】HGS分子構造模型が入手可能に!
  4. 研究室でDIY!ELSD検出器を複数のLCシステムで使えるように…
  5. コロナウイルスCOVID-19による化学研究への影響を最小限にす…
  6. 美麗な分子モデルを描きたい!!
  7. 第40回ケムステVシンポ「クリーンエネルギーの未来を拓く:次世代…
  8. モザイクワクチン HIVから人類を守る救世主となるか

注目情報

ピックアップ記事

  1. クリストファー・ウォルシュ Christopher Walsh
  2. 芳香環メタ位を触媒のチカラで狙い撃ち
  3. カテラニ反応 Catellani Reaction
  4. ヒュッケル法(前編)~手計算で分子軌道を求めてみた~
  5. ノルゾアンタミンの全合成
  6. タミフル―米国―厚労省 疑惑のトライアングル
  7. 4-(ジメチルアミノ)ベンゼンチオール : 4-(Dimethylamino)benzenethiol
  8. 祝ふぐ!新たなtetrodotoxinの全合成
  9. 研究者目線からの論文読解を促す抄録フォーマット
  10. 伯東、高機能高分子材料「デンドリマー」、製造期間10分の1に

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2013年8月
 1234
567891011
12131415161718
19202122232425
262728293031  

注目情報

最新記事

コバルト触媒による多様な低分子骨格の構築を実現 –医薬品合成などへの応用に期待–

第 642回のスポットライトリサーチは、武蔵野大学薬学部薬化学研究室・講師の 重…

ヘム鉄を配位するシステイン残基を持たないシトクロムP450!?中には21番目のアミノ酸として知られるセレノシステインへと変異されているP450も発見!

こんにちは,熊葛です.今回は,一般的なP450で保存されているヘム鉄を配位するシステイン残基に,異な…

有機化学とタンパク質工学の知恵を駆使して、カリウムイオンが細胞内で赤く煌めくようにする

第 641 回のスポットライトリサーチは、東京大学大学院理学系研究科化学専攻 生…

CO2 の排出はどのように削減できるか?【その1: CO2 の排出源について】

大気中の二酸化炭素を減らす取り組みとして、二酸化炭素回収·貯留 (CCS; Carbon dioxi…

モータータンパク質に匹敵する性能の人工分子モーターをつくる

第640回のスポットライトリサーチは、分子科学研究所・総合研究大学院大学(飯野グループ)原島崇徳さん…

マーフィー試薬 Marfey reagent

概要Marfey試薬(1-フルオロ-2,4-ジニトロフェニル-5-L-アラニンアミド、略称:FD…

UC Berkeley と Baker Hughes が提携して脱炭素材料研究所を設立

ポイント 今回新たに設立される研究所 Baker Hughes Institute for…

メトキシ基で転位をコントロール!Niduterpenoid Bの全合成

ナザロフ環化に続く二度の環拡大というカスケード反応により、多環式複雑天然物niduterpenoid…

金属酸化物ナノ粒子触媒の「水の酸化反応に対する駆動力」の実験的観測

第639回のスポットライトリサーチは、東京科学大学理学院化学系(前田研究室)の岡崎 めぐみ 助教にお…

【無料ウェビナー】粒子分散の最前線~評価法から処理技術まで徹底解説~(三洋貿易株式会社)

1.ウェビナー概要2025年2月26日から28日までの3日間にわたり開催される三…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP