[スポンサーリンク]

一般的な話題

夏のお肌に。ファンデーションの化学

[スポンサーリンク]

夏です!夏休みですね!海水浴、プール、登山、お祭り、花火大会などなど楽しい場所に出かける機会も多いかと思います。

私は離島巡りが好きなので先月には礼文島・利尻島を旅行してきました。日本最狂と呼ばれるユースホステルに泊まり「愛とロマンの逆8時間コース」に参加した際、直射日光に文字通り長時間さらされて真っ赤に日焼けしてボロボロに剥け、大変なことになりました。元々色素が薄く日にうまく焼けにくい体質なので、少しは肌を気にすべきだったのかもしれません。

読者の中には常日頃からきちんとスキンケアに気を遣っている方がいることでしょう。前置きが長くなりましたが、今回は女子向けにお肌に関するトピック(?)、ファンデーションの化学について書いてみたいと思います。

ファンデーションの種類

ファンデーションとはご存じの通り、顔に塗ることでシミ・そばかすや小皺などを覆い隠し、きれいな肌に見せるための化粧品のことです。パウダータイプ、油性タイプ、乳化タイプの大きく3つに分類することができます。

ファンデーションと聞いて真っ先に想像するであろうパウダータイプは名前の通り、粉体(顔料)と少量の油剤からできています。粉体といってもただの粉ではなく、化学の技術がぎっしり詰まったハイテク(!?)素材です。現在よく見られる、粉体をそのまま押し固めて作ったパウダーファンデーションを世界で初めて作ったのは、日本のKOSEです。(コーセー世界初物語|コーセー研究所

油性タイプはスティックファンデーションなどに相当し、名前の通り油剤を多く含みます。乳化タイプは名前の通りエマルションが用いられています。用途により水中油滴(O/W型)・油中水滴(W/O型)の両方が売られており、それぞれの特徴をもちます。リキッドファンデーションやクリームファンデーションがこれらに相当します。

残念ながら(?)私はファンデーションを使用しないため、使い心地などの違いはわかりません。しかし、表面エネルギーなど化学の観点からは、パウダータイプは皮脂が濡れ広がりにくいためテカりにくい、油性タイプは汗で落ちにくい(しかし皮脂には流されやすい)など、はっきりとした違いがあります。

ファンデーションと濡れ:撥水・撥油性の制御

夏場のファンデーションで大切なのは、持続性でしょう。ファンデーションには、肌表面への入射光を制御して肌のシミやシワなどを目立たなくする効果がありますが、ただの粉を顔に塗っただけでは汗や皮脂であっという間に落ちてしまいます。このような事態を防ぐために大事なのが「濡れ」に関する技術です。[1] パウダータイプについて書きたいと思います。

夏にかきやすい汗の主成分は水です。ファンデーションが汗で落ちないようにするためには、顔料に撥水性を付与する必要があります。撥水表面を付加する研究において、もっともよく用いられる方法はシロキサン結合(Si-O-Si)を主鎖にもつ高分子であるシリコーン(側鎖として主にメチル基をもつポリシロキサン)によるコーティングです。パウダータイプにおいては、顔料表面をメチルハイドロゲンポリシロキサン(-(H(CH3)SiO)n-)などでコーティングすることにより撥水性をもたせることができます。

肌からは汗など水分の他に、皮脂、つまり油分も分泌されます。皮脂によってファンデーションが落ちないようにするためには、撥油性をもたせることが必要です。撥水性を付与するために用いたシリコーンには撥油性がほとんどありません。そこで、表面エネルギーが低いフッ素化合物を用いて顔料が表面修飾されます。長鎖のパーフルオロアルキル基(CF3(CF2)n−)が付くように表面処理することで、高い撥水・撥油性をもたせることができます。テフロンでコーティングされたフライパンが水や油をよく撥くのと同じイメージです。しかし、撥油処理をしすぎると顔料同士を油剤で混ぜ合わせることができなくなるため、最適化する必要があります。

顔料の表面組成だけでなく、そのものの物理形状も大切です。ハスの葉や昆虫の眼などのように、細かい凹凸面上では水や油がよく撥かれる性質が知られています。[2, 3] パウダーファンデーションも顔料に凹凸性をもたせることによって、より撥水・撥油性を長持ちさせることができます。

顔料同士を混ぜ合わせる油剤にも、撥水・撥油性をもたせて持続性を高めるため、フッ素変性シリコーン(側鎖の炭化水素をフッ化炭素に一部置き換えたもの)などが用いられているようです。とにかくいろんな場面を想定して、濡れに関する設計がなされています。

lotus

ファンデーションを定着させるポリマー

汗をタオルで拭いたりする際の摩擦で簡単に落ちてしまうようでは、ファンデーションは使い物になりません。そうした環境に対する効果を長持ちさせるため、ファンデーションにはバインダーとして樹脂やポリマーが含まれており、皮膜を形成するように設計されています。[1]

ここでも、持続性や顔料との混合のためには撥水・撥油性の制御が大切で、フッ素化シリコーン樹脂やシリコーンで修飾した疎水化多糖などが開発されています。しかしこの場合、接着のためにやシラノール基(Si−OH)やヒドロキシ基(−OH)などの親水基も残してあるようです。

また、あまりに強力な皮膜を形成してしまうと逆に落としにくくなってしまうため、最適解を求めてさまざまな工夫がなされているようです。

日用品にもさりげなくハイテク素材がたくさん

毎日何気なく使われるファンデーションですが、肌に直接触れるための安全性という厳しい条件の中で、さまざまな観点から検討・設計されたハイテク素材です。濡れの他にも、肌をきれいに見せるための光の散乱(ソフトフォーカス効果)や紫外線から肌を守るUVカット、粒径を小さく揃えることによる肌触り向上などいろんな機能が盛り込まれています。

私たちの身の回りには、普段気付くことがない技術がつぎ込まれた製品がたくさん存在します。ファンデーションを塗るためのスポンジ・パフだって、自動車部品などに使われる発泡材料を手がけるメーカーが培ってきた技術を利用して作られています。日用品に使われている化学の最新技術を、夏休みの自由研究として調べてみると楽しめるかもしれません。

化粧品に関しては、化学の基礎知識に基づいていない思い込みを披露しているだけの本やホームページも数多く存在するため、きちんと検討して理解していけば正しい知識を見分ける目も養うことができます。普段使っている化粧品が実はスゴい素材なんだと気付くことで女性研究者が増え、男性にはできない発想から新しい化成品が出てくればいいなとも思っています。

参考文献

  1. “撥水・撥油の技術と材料 (新材料・新素材シリーズ)”, 辻井 薫 監修, シーエムシー出版 (2009).
  2. “Purity of the sacred lotus, or escape from contamination in biological surfaces”, W. Barthlott, C. Neinhuis, Planta, 202, 1 (1997).  DOI: 10.1007/s004250050096
  3. “Recent developments in bio-inspired special wettability”, K. Liu, X.Yao, L. Jiang, Chem. Soc. Rev., 39, 3240 (2010).  DOI: 10.1039/B917112F

GEN

投稿者の記事一覧

大学JK->国研研究者。材料作ったり卓上CNCミリングマシンで器具作ったり装置カスタマイズしたり共働ロボットで遊んだりしています。ピース写真付インタビューが化学の高校教科書に掲載されました。

関連記事

  1. アルケンのエナンチオ選択的ヒドロアリール化反応
  2. 有機合成化学協会誌2020年11月号:英文版特集号
  3. 有機化学を俯瞰する –古代ギリシャ哲学から分子説の誕生まで–【前…
  4. 有機半導体の界面を舞台にした高効率光アップコンバージョン
  5. 美しきガラス器具製作の世界
  6. 化学者のためのエレクトロニクス講座~フォトレジスト編
  7. 水をヒドリド源としたカルボニル還元
  8. チオール架橋法による位置選択的三環性ペプチド合成

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 第30回「化学研究の成果とワクワク感を子供たちにも伝えたい」 玉尾皓平教授
  2. スティーヴン・バックワルド Stephen L. Buchwald
  3. 人名反応に学ぶ有機合成戦略
  4. Google翻訳の精度が飛躍的に向上!~その活用法を考える~
  5. CASがSciFinder-nの画期的逆合成プランナーの発表で研究・開発の生産性向上を促進
  6. Ph.D.化学者が今年のセンター試験(化学)を解いてみた
  7. 第七回 生命を化学する-非ワトソン・クリックの世界を覗く! ー杉本直己教授
  8. 【PR】Chem-Stationで記事を書いてみませんか?【スタッフ・寄稿募集】
  9. 宮沢賢治の元素図鑑
  10. 光レドックス触媒反応 フォトリアクター Penn PhD Photoreactor M2をデモしてみた

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2013年8月
 1234
567891011
12131415161718
19202122232425
262728293031  

注目情報

注目情報

最新記事

有機合成化学協会誌2023年3月号:Cynaropicri・DPAGT1阻害薬・トリフルオロメチル基・イソキサゾール・触媒的イソシアノ化反応

有機合成化学協会が発行する有機合成化学協会誌、2023年3月号がオンライン公開されました。早…

日本薬学会  第143年会 付設展示会ケムステキャンペーン Part 1

さて、日本化学会春季年会の付設展示会ケムステキャンペーンを3回にわたり紹介しましたが、ほぼ同時期に行…

推進者・企画者のためのマテリアルズ・インフォマティクスの組織推進の進め方 -組織で利活用するための実施例を紹介-

開催日:2023/03/22 申し込みはこちら■開催概要近年、少子高齢化、働き手の不足の…

日本化学会 第103春季年会 付設展示会ケムステキャンペーン Part3

Part 1・Part2に引き続き第三弾。日本化学会年会の付設展示会に出展する企業とのコラボです。…

第2回「Matlantis User Conference」

株式会社Preferred Computational Chemistryは、4月21日(金)に第2…

日本化学会 第103春季年会 付設展示会ケムステキャンペーン Part2

前回のPart 1に引き続き第二弾。日本化学会年会の付設展示会に出展する企業とのコラボです。…

マテリアルズ・インフォマティクスにおける従来の実験計画法とベイズ最適化の比較

開催日:2023/03/29 申し込みはこちら■開催概要近年、少子高齢化、働き手の不足の…

日本化学会 第103春季年会 付設展示会ケムステキャンペーン Part1

待ちに待った対面での日本化学会春季年会。なんと4年ぶりなんですね。今年は…

グアニジニウム/次亜ヨウ素酸塩触媒によるオキシインドール類の立体選択的な酸化的カップリング反応

第493回のスポットライトリサーチは、東京農工大学院 工学府生命工学専攻 生命有機化学講座(長澤・寺…

カーボンニュートラルへの化学工学: CO₂分離回収,資源化からエネルギーシステム構築まで

概要いま我々は,カーボンニュートラルの実現のために,最も合理的なエネルギー供給と利用の選…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP