[スポンサーリンク]

化学者のつぶやき

キラルな八員環合成におすすめのアイロン

[スポンサーリンク]

キラルなジイミン鉄触媒を用いた1,3-ジエンのクロス[4+4]環化付加反応が開発された。緻密な触媒設計により、置換シクロオクタジエンの高エナンチオ選択的合成が達成された。

鉄触媒を用いたシクロオクタジエン合成

キラルなシクロオクタジエンは、天然物の部分骨格や不斉触媒の配位子にみられる重要骨格である。エントロピーの観点から閉環反応では8員環が構築しにくいため、シクロオクタジエン合成は現在でも有機合成化学における課題の1つである。高い原子効率かつ直感的な合成法の1つとして、金属触媒を用いた1,3-ジエンの[4+4]環化付加反応が知られている。1950年代にZieglerやWilke、Reedらは、ニッケル触媒を用いたブタジエンの[4+4]環化付加反応を報告した(図1A)。しかし、この手法では置換1,3-ジエンを原料とすると、化学選択性および位置選択性が低下するという課題があった。
一方、1985年にtom Dieckは -ジイミン-鉄(DI-Fe)錯体がブタジエンの[4+4]環化付加反応に対して触媒作用を示すことを見いだした[1]。1992年、彼らはキラルなDI-Fe触媒Fe1を用いることで、(–)-1,7-ジメチル-1,5-シクロオクタジエンを中程度のエナンチオ選択性で得ることに成功した(図1B)[2]。また、2019年にChirikらはFe2およびFe3を触媒とする、一置換1,3-ジエンの高ジアステレオ選択的[4+4]環化付加反応を報告した(図1C)[3]。しかし、これらの反応はいずれも高エナンチオ選択性の発現には至っておらず、さらなる触媒開発が必要であった。
今回、Cramerらは鉄錯体Fe4を合成し、それを触媒に用いることで、一置換1,3-ジエンのクロス[4+4]環化付加反応を高エナンチオ選択的に進行させることに成功した(図1D)。

図1. (A) 1,3ジエンのニッケル触媒[4+4]環化付加反応 (B) tom Dieckらによる反応 (C) Chirikらの反応 (D) 今回の反応

Enantioselective Iron-Catalyzed Cross-[4+4]-Cycloaddition of 1,3-Dienes Provides Chiral Cyclooctadienes

Braconi, E.; Götzinger, A. C.; Cramer, N. J. Am. Chem. Soc. 2020, 142, 19819–19824.

DOI: 10.1021/jacs.0c09486

論文著者の紹介


研究者:Nicolai Cramer
研究者の経歴:
1998–2003 B.S., University of Stuttgart, Germany
2003–2005 Ph.D., University of Stuttgart, Germany (Prof. Sabine Laschat)
2005–2005 Research, University of Osaka, Japan (Prof. Michio Murata)
2006–2007 Postdoc, University of Stanford, USA (Prof. Barry M. Trost)
2007–2010 Habilitation, ETH Zurich, Switzerland (Prof. Erick M. Carreira)
2010–2013 Assistant Professor, EPF Lausanne, Switzerland
2013–2015 Associate Professor, EPF Lausanne, Switzerland
2015–           Professor, ETH Lausanne, Switzerland
研究内容:エナンチオ選択的な金属触媒反応の開発および生理活性物質合成への応用

論文の概要

本反応は、一位と二位にそれぞれ置換基を有するジエン12に対し、DI-Fe(II)触媒とその活性化剤であるジブチルマグネシウムを作用させることで目的のシクロオクタジエン3を与える。著者らはまずDI-Fe(II)触媒が本反応の化学選択性、立体選択性に及ぼす影響を調査した(図2A)。その結果、触媒Fe4が最も高い化学選択性およびエナンチオ選択性で3aを与えた (Entry 1)。芳香環を有するFe5では、エナンチオ選択性が -スタッキングにより支配され、Fe4の場合と逆転した(Entry 2)。Fe4に比べジイミン側鎖がより嵩高いFe6を用いた場合は、鉄原子周りの立体障害により化学選択性が低下した(Entry 3)。また著者らはX線構造解析から、Fe4を用いた場合の高エナンチオ選択性の発現要因は、C2対称に広がったジイミン側鎖との立体反発を避けるようにして、鉄原子とジエンが相互作用するためであると結論付けた。
本反応の基質適用範囲は広く、電子求引基(1b)や電子供与基(1c)およびハロゲン(1d)を有するアリール基や、嵩高いtert-ブチル基(1e)をもつジエン1を用いた際に、高収率かつ高エナンチオ選択的に対応するシクロオクタジエン3bb–3ecを与えた(図2B)。またジエン2がオレフィン(2d)やフラン(2e)を有する場合にも、良好な収率およびエナンチオ選択性で3fd3feが得られた。さらに、本反応によって得られる3gfにロジウム錯体を添加することでロジウム不斉触媒4へ、ギ酸を作用させることでビシクロ[3.3.0]オクタン(5)への誘導化が可能である(図2C)。

図2. (A) ジイミン配位子骨格の立体効果 (B) 基質適用範囲 (C) 誘導化

以上、エナンチオ選択的クロス[4+4]環化付加反応によるキラルな8員環合成法が報告された。今後は、本反応により合成されるシクロオクタジエンをキラル配位子とした不斉反応の開発が期待される。

参考文献

  1. tom Dieck, H.; Dietrich, J. Selectivity and Mechanism of Diene Cycodimerization on Iron (0) Complexes. Angew. Chem., Int. Ed. 1985, 24, 781–783. DOI: 10.1002/anie.198507811
  2. Baldenius, K.-U.; tom Dieck, H.; Konig, W. A.; Icheln, D.; Runge, T. Enantioselective Syntheses of Cyclopentanoid Compounds from Isoprene and trans-1,3-Pentadiene. Angew.  Chem., Int. Ed. 1992, 31, 305–307. DOI: 10.1002/anie.199203051
  3. Kennedy, C. R.; Zhong, H.; Macaulay, R. L.; Chirik, P. J. Regio- and Diastereoselective Iron-Catalyzed [4+4]-Cycloaddition of 1,3-Dienes. J. Am. Chem. Soc. 2019, 141, 8557–8573. DOI: 1021/jacs.9b02443
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. プロトン共役電子移動を用いた半導体キャリア密度の精密制御
  2. 有機合成化学協会誌2021年10月号:フッ素化反応2010-20…
  3. 米国へ講演旅行へ行ってきました:Part III
  4. 化学に関係ある国旗を集めてみた
  5. トンネル効果が支配する有機化学反応
  6. 金属内包フラーレンを使った分子レーダーの創製
  7. マテリアルズ・インフォマティクスにおける分子生成の基礎
  8. ペプチドのらせんフォールディングを経る多孔性配位高分子の創製

注目情報

ピックアップ記事

  1. 【12月開催】第十四回 マツモトファインケミカル技術セミナー   有機金属化合物 オルガチックスの性状、反応性とその用途
  2. 長井長義の日記など寄贈 明治の薬学者、徳島大へ
  3. エーザイ、抗てんかん剤「イノベロン」、ドイツなどで発売を開始
  4. ジンクピリチオン (zinc pyrithione)
  5. ロルフ・ヒュスゲン Rolf Huisgen
  6. 鉄とヒ素から広がる夢の世界
  7. 【第14回Vシンポ特別企画】講師紹介:酒田 陽子 先生
  8. 酵素による光学分割 Enzymatic Optical Resolution
  9. リチウムイオン電池の課題のはなし-1
  10. 【書評】有機化学のための量子化学計算入門

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2021年2月
1234567
891011121314
15161718192021
22232425262728

注目情報

最新記事

第70回「ケイ素はなぜ生体組織に必要なのか?」城﨑由紀准教授

第XX回目の研究者インタビューです! 今回は第52回ケムステVシンポ「生体関連セラミックス科学が切り…

第69回「見えないものを見えるようにする」野々山貴行准教授

第69回目の研究者インタビューです! 今回は第52回ケムステVシンポ「生体関連セラミックス科学が切り…

第68回「表面・界面の科学からバイオセラミックスの未来に輝きを」多賀谷 基博 准教授

第68回目の研究者インタビューです! 今回は第52回ケムステVシンポ「生体関連セラミックス科学が切り…

配座制御が鍵!(–)-Rauvomine Bの全合成

シクロプロパン環をもつインドールアルカロイド(–)-rauvomine Bの初の全合成が達成された。…

岩田浩明 Hiroaki IWATA

岩田浩明(いわたひろあき)は、日本のデータサイエンティスト・計算科学者である。鳥取大学医学部 教授。…

人羅勇気 Yuki HITORA

人羅 勇気(ひとら ゆうき, 1987年5月3日-)は、日本の化学者である。熊本大学大学院生命科学研…

榊原康文 Yasubumi SAKAKIBARA

榊原康文(Yasubumi Sakakibara, 1960年5月13日-)は、日本の生命情報科学者…

遺伝子の転写調節因子LmrRの疎水性ポケットを利用した有機触媒反応

こんにちは,熊葛です!研究の面白さの一つに,異なる分野の研究結果を利用することが挙げられるかと思いま…

新規チオ酢酸カリウム基を利用した高速エポキシ開環反応のはなし

Tshozoです。最近エポキシ系材料を使うことになり色々勉強しておりましたところ、これまで関連記…

第52回ケムステVシンポ「生体関連セラミックス科学が切り拓く次世代型材料機能」を開催します!

続けてのケムステVシンポの会告です! 本記事は、第52回ケムステVシンポジウムの開催告知です!…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP