[スポンサーリンク]

一般的な話題

資金洗浄のススメ~化学的な意味で~

面白い化学技術の応用例がIndustrial Engineering & Chemical Research誌に発表されていましたので紹介いたします。

Tshozoです。 日々我慢です。殴ったら負け。

今回、ちょっと見かけない形で化学技術を応用した例を見つけましたのでご紹介します。ぱっと見「なんだ、そんなことか」と思われるかもしれませんが、問題の見つけ方が面白く、特にその着眼点は実験室に籠っているだけではなかなか思いつかないのではないかと思います。基本的に科学は社会と直接の接点を持つと存在意義がより一層増すのですから、その視野を広げる意味でご一読頂ければと思います。

で、今回紹介する論文はACS Publicationの一部門紙であるIndustrial Engineering & Chemical Researchに掲載された「Supercritical Fluid Cleaning of Banknotes」(元論文 → )というタイトルのもの。直訳すると「超臨界流体による紙幣洗浄」ということになりますでしょうか。要は、「紙幣汚ねえからロンダしようぜ! 超臨界で!」ということです。経済的にではなく、化学的に。経済的なやり方は実施したり書いたりしたらお縄になりますので、ここは健全に化学的に洗うことに話のポイントを置くとしましょう。

まず、この紹介にあたって、超臨界とは一体どういうものかをざっとおさらいします。「超臨界とは物質(主に常温で気体のもの)の臨界点を超える高圧・高温状態」と定義できます。状態図で言うと下図の斜線エリアですが、面白いのはこの状態では物質が気体と流体の境目が無くなる」という特性を得ることです。

moneylaundering_02.jpg

超臨界の定義にあたる領域 

基本的に高圧・高温(CO2では比較的低温・低圧の32℃前後、70気圧程度で超臨界になる)

 歴史的(技術的)に超臨界状態まで持って行けるようになったのは、実はBASFによるハーバー・ボッシュ法の発明が大きく寄与しています。アンモニアの量産化を通じてコンプレッサ(昇圧器)とリアクタ(圧力容器)が飛躍的に発展。間違いなく当時の技術の上限を遥かに超えていた「100MPa、500℃」というとんでもない領域の気体を実現できるようになりました。しかし、窒素だけでは化学的にあんまりおもしろくない。では色々な気体で超臨界状態を試してみたら何が面白いか、という形で発展してきて超臨界流体の学問が発展してきたわけです。

で、話を今回の論文に戻します。

発表したのは名門ブラウン大学の物理化学工学専攻の研究者。新規性は、「1年あたりでオジャンになる紙幣に結構費用がかかっている」という問題に対し、「紙幣を綺麗に再利用するための新しい手法」を提案した点でした。論文が主張するところによると、世界中で年間1500億枚の紙幣が発行されますがこれにまず全世界で1兆円くらいかかっている、加えて毎年オジャンになってシュレッダー・リサイクルされる紙幣が年間全世界で15万トンもある。そこで、「紙幣の寿命を延ばしてやれば、発行紙幣数が減らせてリサイクルすべき紙幣数も減らせるのではないか」というところに目をつけたわけです。

そのオジャンになる理由の大半が「破れ」「黄変」といった劣化です。古い紙幣を見ると黄色くシミのようなものが付いていたりするのをよく見ませんか?(日本の紙幣は先進国の中でもかなり丈夫な部類に入りますので最近はあまりないかもしれませんが・・・) 実はこの黄変は人間の体から出た皮脂類が空気中の酸素と反応した結果で、見た目だけならまだしも紙幣の繊維を劣化させて破れやすくするという厄介な影響を起こします。なおこの「紙幣の劣化のもともとの原因が人間の皮脂である」という事実は元々オランダ中央銀行(De Netherlande Bank 論文中ではDNBと記載)が見出した知見であり、こちら→  の発表にその詳細が記載されています。今回の論文はそれに対し「皮脂が付いたら洗えばよい」と主張していることになります。

moneylaundering_04.jpg黄変・ヨレによる紙幣劣化の様子(左→右の順に継時劣化したもの) 画像はこちらより引用 → 

 しかし有機溶剤などを使用するとVOCの問題が発生しますし、環境負荷が高まる可能性も否定できません。また印刷の劣化やインクの溶出も発生してしまいかねない。ましてや水で洗ったりは出来ない。

そこで用いたのが上述の超臨界(本件ではCO2を使用)です。一番最初に述べたように、超臨界は気体と流体の境目が無くなる。ということは、超臨界になる物質をうまく選べば繊維は劣化させずに特定のモノを溶かし出せるということが可能です。つまり紙幣の奥の奥まで皮脂だけを取り去り、インクは飛ばない条件を探し出せることになります。しかも溶剤は使わない(使っても極少量)。後はCO2を分離できれば、皮脂類を燃やすだけになります。詳しい実験条件などは論文を直接見て頂くとして、処理前後で紙幣重量が4%も減少したということでした。

moneylaundering_05.jpg代表的な超臨界リアクタ(KOBELCOグループ 神鋼エアテック殿サイトより引用→ ) 

要は圧力釜のお化けみたいなもの

 本件、実際にはコストの問題や紙幣交換のサイクルとの兼ね合いにはなると思いますが、おカネと化学との間に意外と見つかりにくい面白い橋をかけたなぁ、と感じた次第です。

なお、蛇足ですが超臨界流体で最もメジャーなのが「コーヒー豆からのカフェインの抽出」です。要はデカフェコーヒーは超臨界技術を用いて作製されているわけです(この超臨界技術を用いる以前は何と塩化メチレン(CH2Cl2)を用いて抽出していました)。この工業化の成功以来、環境負荷が比較的低いCO2をうまく用いて色々な微量物質を抽出したり、先端分野では半導体のフォトリソ工程の洗浄(表面張力が事実上ゼロなので、極小・高アスペクトパターンの倒れ込みを防止できる)等の応用先の開拓が現在も進められています(下図)。

moneylaundering_06.jpg超臨界洗浄法による半導体のフォトリソグラフィパターン倒れ防止効果の例

超純水や有機溶媒単独での洗浄に比べてその差は一目瞭然(引用元 → 

 また系によっては超臨界状態で促進される反応もあるようで、もしなかなか反応が進まないと困っている場合にはヤケクソで試しに下記のようなリアクタで試してみるのもいかがでしょうか。「いっぺん、やってみる」のは思いもしない成果を生むこともあります! ただし超臨界反応は『高圧保安法』という法律に基づいた、きちんとした運用が必要になりますのでその点は十分にボスと相談してから実施してくださいね。

moneylaundering_03.jpg耐圧硝子工業殿によるミニリアクター(こちらより引用 → 

 最後に自戒も込めて書きますが、ややもすると研究対象が目的そのものなのか、また手段になり得るのかを時として見失う場合があります。そんな時には、研究対象が社会の中でどのように活用できるのかを常に考えて、今回のように異分野の間に「大小様々な素晴らしい橋」をかけられるようなビジョンを持って研究を続けられ、活躍されんことをお祈りいたします。

それでは今回はこんなところで。

The following two tabs change content below.
Tshozo

Tshozo

メーカ開発経験者(電気)。56歳。コンピュータを電算機と呼ぶ程度の老人。クラウジウスの論文から化学の世界に入る。ショーペンハウアーが嫌い。

関連記事

  1. 第10回次世代を担う有機化学シンポジウムに参加してきました
  2. アジサイには毒がある
  3. 18万匹のトコジラミ大行進 ~誘因フェロモンを求めて①~
  4. 未来のノーベル化学賞候補者
  5. 耐薬品性デジタルマノメーター:バキューブランド VACUU・VI…
  6. デスソース
  7. Z-選択的オレフィンメタセシス
  8. 砂糖水からモルヒネ?

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. マイヤー・シュスター転位/ループ転位 Meyer-Schuster/Rupe Rearrangement
  2. 【PR】 Chem-Stationで記事を書いてみませんか?【スタッフ募集】
  3. パール・クノール チオフェン合成 Paal-Knorr Thiophene Synthesis
  4. 二次元物質の科学 :グラフェンなどの分子シートが生み出す新世界
  5. 遠藤守信 Morinobu Endo
  6. 学会ムラの真実!?
  7. 非天然アミノ酸合成に有用な不斉ロジウム触媒の反応機構解明
  8. 第37回 糖・タンパク質の化学から生物学まで―Ben Davis教授
  9. クラリベイト・アナリティクスが「引用栄誉賞2018」を発表
  10. 科学を理解しようとしない人に科学を語ることに意味はあるのか?

関連商品

注目情報

注目情報

最新記事

アジドの3つの窒素原子をすべて入れる

ホスフィン触媒を用い、アジド化合物とα,β-エノンからβ-アミノα-ジアゾカルボニル化合物を合成した…

工程フローからみた「どんな会社が?」~タイヤ編 その1

Tshozoです。今回の主役はゴムで出来ている車両用タイヤ。通勤時に道路で毎日目にするわりに…

感染制御ー薬剤耐性(AMR)ーChemical Times特集より

関東化学が発行する化学情報誌「ケミカルタイムズ」。年4回発行のこの無料雑誌の紹介をしています。…

有機合成化学協会誌2019年1月号:大環状芳香族分子・多環性芳香族ポリケチド天然物・りん光性デンドリマー・キャビタンド・金属カルベノイド・水素化ジイソブチルアルミニウム

有機合成化学協会が発行する有機合成化学協会誌、2019年1月号がオンライン公開されました。今…

リチウムイオンバッテリーの容量を最大70%まで向上させる技術が開発されている

スマートフォンや電気自動車の普及によって、エネルギー密度が高く充電効率も良いリチウムイオンバッテリー…

学部4年間の教育を振り返る

皆様、いかがお過ごしでしょうか。学部4年生の筆者は院試験も終わり、卒論作成が本格的に始まるまでの束の…

Chem-Station Twitter

PAGE TOP