[スポンサーリンク]

一般的な話題

合成生物学を疾病治療に応用する

[スポンサーリンク]

先日の記事では、「ものづくり」に焦点を当てて、合成生物学の力量と将来性を紹介してきました。

しかしその応用は、「ものづくり」にとどまるものではありません。

新たな人工生物系を用い、高い選択性/有効性/安全性を持った治療法の開発が医療分野で進められているのです。

このうち多能性幹細胞については既に良質な解説が多数あります。ですので今回は、それ以外の研究に焦点を当てて取りあげてみたいと思います。

主には下記レビューをまとめ上げた内容になりますが、今後の医療科学の方向性を化学者側で考えるきっかけにできればと思います。

Bringing next-generation therapeutics to the clinic through synthetic biology.
Bugaj, L. J.; Schaffer, D. V. Curr. Opin. Chem. Biol. 2012, 16, 355. doi:10.1016/j.cbpa.2012.04.009

合成生物学の疾病治療への応用は、研究領域としては開拓が始まったばかりです。

しかしながら、「機能を持たせた遺伝子回路系を、生体内に組み込む治療戦略」には、その高い潜在性を窺わせる例が既に多数存在します。

これらは大きく分けて3タイプに分類されます。代表例を簡単に紹介してみましょう。

synthbio_therapy_2.png

 

1.患者の細胞に直接合成遺伝子系を導入する系

一言で言えば「細胞を遺伝子改変して病気を治す」という考え方です。特に加齢性細胞や機能不全組織を治療する目的に、もっとも直接性の高い方法といえます。

従来の遺伝子治療では、機能性遺伝子を標的細胞に組み込むことが限度でした。

合成生物学では、環境応答性素子を機能性遺伝子に組み込むことで、より高精度な遺伝子発現制御を狙っています。すなわち望む生体環境下でのみ、遺伝子発現をon/offする設計です。

たとえば以下の図は、がん細胞のみで作動する遺伝子を投与することで、ガン細胞を選択的にたたく治療法を示しています。

ガン特異的な転写因子(TF-1,TF-2)によって最下流の遺伝子産物であるチミジンキナーゼ(TK)が発現し、ガンシクロビルという薬剤存在下に致死作用を発現するという仕組みです。

synthbio_therapy_3.png

 

2.合成遺伝子系を組み込んだ機能性細胞を患者に投与する方法

一言で言えば「遺伝子改変細胞を薬とみなして投与し、病気を治す」という考え方です。免疫系によるクリアランスが問題になるので、抱合性分子に包含された状態で投与される想定です。

1の直接的遺伝子導入法と比較して、

  1. 目的の機能を有する細胞のスクリーニングがex vioで可能
  2. 人工細胞とホスト細胞との相互作用が抑えられるため、安全性が高い
  3. off-targetの遺伝子導入を避けられる

などが優位点として挙げられます。

応用例としては、尿酸応答転写因子と尿酸代謝酵素遺伝子を組み込んだ細胞を投与して痛風治療を行ったり、光応答性遺伝子発現を行う細胞を投与することで、病組織だけで血糖降下ホルモンの局所発現を目指す治療法などが提案されています。

3.合成遺伝子系を組み込んだバクテリアベクターを患者に投与する方法

一言で言えば「バクテリアによって改変遺伝子を運びこんで、病気を治す」治療法です。

大腸菌やサルモネラ菌などある種のバクテリアは、ガン組織に集積する性質を有します。この特異な性質をガン細胞ターゲティングの手段として用います。

利点としては、

  1. バクテリアは遺伝子操作がしやすく、機能性遺伝子を組み込むのが容易
  2. ガン細胞に対するターゲット選択性が高い
  3. バクテリアが運動性を有するので、受動拡散では到達できない深部がん組織にも作用できる

などがあげられます。

この遺伝子改変バクテリアをモデルマウスに投与することで、がん組織の縮小化(1/2~1/10)に成功した例が知られています(図a)。ここでは、ガン関連遺伝子産物(bcl2, STAT3 etc)や抗アポトーシス性タンパクに対するsiRNAを組み込んだサルモネラ菌が使われています。

またバクテリアをベクターとする方法ならではの応用として、コレラ毒素の産出を抑える方法も提案されています。

腸内においてコレラ菌密度が高い時には、コレラ菌は毒素を放出しません。コレラ菌はCAI-1という分子を仲間密度の感知手段として利用しています。これを逆手にとり、CAI-1を生産する改変大腸菌を腸内に寄生させれば、コレラ毒素の放出がなされなくなるという理屈です(図b)。

synthbio_therapy_4.png

 

本質的な問題点

利点ばかりを強調しても何なので、把握されている問題点も併記しておきます。

現在最も懸念されているのは、設計遺伝子系の予想外の作用、つまり「遺伝子組換えの結果もたらされる、即時的/隔世的な危険性が全く読めない」点です。要するに遺伝子組み換え食品で懸念される安全性問題と同様のハードルを抱える治療法と言うことができます。

「なるべく複雑性を抑えた単純な遺伝子系で、いかに高度の機能を実現させるか」に加え、倫理と法規制の整備も科学的側面以外の大きな課題となっているようです。後者はバイオパンク潮流なども相まって、完璧に押さえつけることは難しそうな印象です。一歩間違えれば特定の人的マーカーを標的としたテロ応用やバイオハザードを引き起こしかねない方法でもあるわけです。

これらを上手く解決したり丸めることができるか否かで、今後の普及が決定づけられるような印象を受けました。

 

総括

以上の手法と「ものづくりによって開発された薬を投与する」従来型治療法との最大の違いは、一つor複数の分子を用いるのではなく、環境認識・応答を組み込んだシステムを利用する点にあるといえます。

つまり医学研究の発展方向を眺めたとき、治療の手段は「分子」から「システム」に移行しつつあるのでは?と見ることが出来ます。

最初から生体適合性がある程度保障されている系(遺伝子・細胞)を人為的に改変して投与し、所望の治療機能を生体内で環境応答的に発現させるという戦略は、実効的な治療につながりやすいアプローチと言えるでしょう。

人工的な有機分子でこのあたりを実現しようとすると、分子サイズと構成要素の巨大化・肥大化がどうしても避けられません。結局はこれが生体適合性や機能そのものを損なう大きな原因となったり、開発速度の遅延を招くという、避けがたいジレンマに直面している現実でもあるでしょう。生体指向型化学の将来に関し、根源的な問題を提起する事例と言えるのではないでしょうか。

【「化学」が医療領域に対し貢献できることは何か?】と今一度の考えを巡らせる、良い契機と本記事がなれば幸いです。

(各コンセプト図は冒頭総説より引用しました)

 

関連書籍

[amazonjs asin=”0123944309″ locale=”JP” title=”Synthetic Biology: Tools and Applications”][amazonjs asin=”4140815329″ locale=”JP” title=”バイオパンク―DIY科学者たちのDNAハック!”]

 

外部リンク

Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 植物毒の現地合成による新規がん治療法の開発
  2. 多価不飽和脂肪酸による光合成の不活性化メカニズムの解明:脂肪酸を…
  3. 今年は Carl Bosch 生誕 150周年です
  4. 化学の学びと研究に役立つiPhone/iPad app 9選
  5. 13族元素含有ベンゼンの合成と性質の解明
  6. 飲むノミ・マダニ除虫薬のはなし
  7. 化学者のためのエレクトロニクス講座~電解ニッケルめっき編~
  8. 実験メガネを15種類試してみた

注目情報

ピックアップ記事

  1. 来年は世界化学年:2011年は”化学の年”!
  2. 光親和性標識 photoaffinity labeling (PAL)
  3. 様々な化学分野におけるAIの活用
  4. 酢酸エチルの高騰が止まらず。供給逼迫により購入制限も?
  5. サントリー:重曹を使った新しい飲料「水分補給炭酸」発売
  6. howeverの使い方
  7. 論文執筆で気をつけたいこと20(1)
  8. フラッシュ自動精製装置に新たな対抗馬!?: Reveleris(リベラリス)
  9. カイニン酸 kainic acid
  10. 研究室でDIY!~光反応装置をつくろう~

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2014年2月
 12
3456789
10111213141516
17181920212223
2425262728  

注目情報

最新記事

岩田浩明 Hiroaki IWATA

岩田浩明(いわたひろあき)は、日本のデータサイエンティスト・計算科学者である。鳥取大学医学部 教授。…

人羅勇気 Yuki HITORA

人羅 勇気(ひとら ゆうき, 1987年5月3日-)は、日本の化学者である。熊本大学大学院生命科学研…

榊原康文 Yasubumi SAKAKIBARA

榊原康文(Yasubumi Sakakibara, 1960年5月13日-)は、日本の生命情報科学者…

遺伝子の転写調節因子LmrRの疎水性ポケットを利用した有機触媒反応

こんにちは,熊葛です!研究の面白さの一つに,異なる分野の研究結果を利用することが挙げられるかと思いま…

新規チオ酢酸カリウム基を利用した高速エポキシ開環反応のはなし

Tshozoです。最近エポキシ系材料を使うことになり色々勉強しておりましたところ、これまで関連記…

第52回ケムステVシンポ「生体関連セラミックス科学が切り拓く次世代型材料機能」を開催します!

続けてのケムステVシンポの会告です! 本記事は、第52回ケムステVシンポジウムの開催告知です!…

2024年ノーベル化学賞ケムステ予想当選者発表!

大変長らくお待たせしました! 2024年ノーベル化学賞予想の結果発表です!2…

“試薬の安全な取り扱い”講習動画 のご紹介

日常の試験・研究活動でご使用いただいている試薬は、取り扱い方を誤ると重大な事故や被害を引き起こす原因…

ヤーン·テラー効果 Jahn–Teller effects

縮退した電子状態にある非線形の分子は通常不安定で、分子の対称性を落とすことで縮退を解いた構造が安定で…

鉄、助けてっ(Fe)!アルデヒドのエナンチオ選択的α-アミド化

鉄とキラルなエナミンの協働触媒を用いたアルデヒドのエナンチオ選択的α-アミド化が開発された。可視光照…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP