[スポンサーリンク]

スポットライトリサーチ

メタンガスと空気からメタノールを合成する

[スポンサーリンク]

第136回目のスポットライトリサーチは、大阪大学高等共創研究院・先導的学際研究機構の大久保 敬教授にお願いしました。(実験を担当された廣瀬さんはご都合つきませんでしたので、番外編として大久保先生にお願いしました。)

大久保先生の研究室では、光照射やそれに伴う電子移動を鍵とした新規反応が研究されています。

今回ご紹介する研究は、メタンガスを空気存在下メタノールへと変換する反応です。この研究はACIE誌のVIP(Very Important Paper)としてハイライトされており、プレスリリースとしても取り上げられています。

Light-Driven C−H Oxygenation of Methane into Methanol and Formic Acid by Molecular Oxygen Using a Perfluorinated Solvent

K. Ohkubo, K. Hirose

Angew. Chem. Int. Ed. Early View DOI: 10.1002/anie.201710945

それでは、ご覧ください。

Q1. 今回のプレス対象となったのはどんな研究ですか?

メタンガスと酸素から二酸化炭素排出無しで液体燃料のメタノールとギ酸へ変換することに成功しました。除菌消臭剤の有効成分として知られている二酸化塩素を反応剤とすることで常温・常圧でメタン酸化がほぼ100%の収率で得られます。この反応は二酸化塩素に光を照射することで進みます。メタンガスを高濃度で溶解させ、反応中間体の活性ラジカル種の失活を防ぎ、酸化反応を受けないフルオラス溶媒を用いたことが反応達成の鍵です。反応を水との2相系で行うことによって、生成物のメタノールやギ酸は水中に濃縮され、水中では酸化反応が起こらないため、生成物のさらなる酸化による二酸化炭素の排出が起こりません。酸化剤は分子状酸素で犠牲酸化剤を必要としないだけではなく、副生成物は塩化ナトリウムのみですので低コスト・クリーンな反応として今後様々な分野での応用を期待しています。

図1 メタンからメタノールおよびギ酸を製造するプロセスの模式図。メタンと空気、二酸化塩素からメタノールとギ酸が合成される。反応はフルオラス溶媒で起こり、その後生成物は水中に濃縮される。

Q2. 本研究テーマについて、自分なりに工夫したところ、思い入れがあるところを教えてください。

メタンは化学的に極めて安定な物質なので、メタンを酸化するためには、非常に強力な酸化剤を必要とします。安価なで汎用品のメタノールの合成ターゲットとしたので、触媒なども含め高価なものは使用できません。すなわち1キロ数十円で合成しなければならないということです。そうなると酸化剤は空気中の酸素しかありません。一般的によく使用される酸化剤は、過酸化水素やmCPBA等のような犠牲酸化剤などが知られていますが、これらには手を出さずにメタンの酸素酸化にこだわって研究開発を行いました。

Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?

これまでの私たちの研究ではアセトニトリルなどのような非プロトン性の有機溶媒を使用することが多かったのですが、メタン酸化の研究では全く使用できませんでした。これはメタンのC-H結合が切れずに、先に溶媒のC-H結合優先して切れてしまうためです。本研究論文の共著者であった廣瀬君には、いろいろな溶媒を試してもらい、その結果見つけてくれたのが電子材料の洗浄などに使用されているパーフルオロヘキサンでした。溶媒分子中にC-H結合が全くないので、どんなに強い酸化剤を使用したとしても溶け込んでいるC-H基質のみを選択的に酸化することができるようになりました。

Q4. 将来は化学とどう関わっていきたいですか?

今回の論文では、有機化学の中でも困難と言われていたメタンの酸素酸化反応について発表しましたが、これを様々な化合物への適用を目指した研究を引き続き続けたいと思います。人に役に立つ反応、実際に使える反応を目指して産学の架け橋となるような研究開発を進めていきたいと思います。

Q5. 最後に、読者の皆さんにメッセージをお願いします。

この研究のきっかけは、除菌消臭剤として使われていた二酸化塩素がどうして機能するのかという某企業の相談からでした。相談では二酸化塩素により除菌消臭というのはこの分野では常識とのことでした。しかし、臭い分子を一瞬で分解しているというので、その反応機構を考えるとあり得ない、いや面白いことが起こっていることに気がつきました。さらに注意深く突き詰めることで今回の有機化合物では最も難しい反応の一つのメタンの酸素酸化反応の発見に繋がりました。

世の中には様々な情報があふれていますが、自分のフィールドとは離れたところから情報を得てそれを自分のものとして取り込み、全く新しい仮説を立てることが重要だと思っています。例えば化学者でしたら医学書を読んでみるのもいいと思います。医学の常識が化学では非常識であることが多々あります。これを自分の知識をフル活用して突き詰めていくと新しい発見が生まれることは間違いありません。

修士課程修了間近の超多忙な時期に黙々とこの研究に携わってくれた廣瀬健策氏にはこの場を借りて感謝申し上げたいと思います。

関連リンク

大阪大学プレスリリース

研究者の略歴

大久保 敬(おおくぼ けい)

大阪大学高等共創研究院・先導的学際研究機構 教授

研究テーマ:光化学、酸化反応、有機触媒、電子移動

 

The following two tabs change content below.

Orthogonene

有機合成を専門にするシカゴ大学化学科PhD3年生です。 趣味はスポーツ(器械体操・筋トレ・ランニング)と読書です。 ゆくゆくはアメリカで教授になって活躍するため、日々精進中です。 http://donggroup-sites.uchicago.edu/

関連記事

  1. 再生医療ーChemical Times特集より
  2. プロセス化学ー合成化学の限界に挑戦するー
  3. 書物から学ぶ有機化学4
  4. 化学の力で複雑なタンパク質メチル化反応を制御する
  5. “マイクロプラスチック”が海をただよう …
  6. 未来社会創造事業
  7. 第94回日本化学会付設展示会ケムステキャンペーン!Part II…
  8. 「進化分子工学によってウイルス起源を再現する」ETH Zuric…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 2012年イグノーベル賞発表!
  2. 大型期待の認知症薬「承認申請数年遅れる」 第一製薬
  3. 産学官若手交流会(さんわか)第19回ワークショップ のご案内
  4. エシュバイラー・クラーク反応 Eschweiler-Clarke Reaction
  5. 脱水素型クロスカップリング Cross Dehydrogenative Coupling (CDC)
  6. sp2-カルボカチオンを用いた炭化水素アリール化
  7. 「溶融炭酸塩基の脱プロトン化で有用物質をつくる」スタンフォード大学・Kanan研より
  8. ポリメラーゼ連鎖反応 polymerase chain reaction
  9. 縮合剤 Condensation Reagent
  10. 持田製薬/エパデールのスイッチOTC承認へ

関連商品

注目情報

注目情報

最新記事

ロータリーエバポレーターの回転方向で分子の右巻き、左巻きを制御! ―生命のホモキラリティーの起源に踏み込む―

第236回のスポットライトリサーチは、東京大学生産技術研究所 石井研究室で博士研究員をされていた、服…

「あの人は仕事ができる」と評判の人がしている3つのこと

仕事を辞めて、転職をしたいと思う動機の一つとして、「今の会社で評価されていない」という理由がある。し…

光で2-AGの量を制御する

ケージド化合物を用いた2-AG量の操作法が初めて開発された。2-AG量を時空間的に操作することができ…

葉緑素だけが集積したナノシート

第235回のスポットライトリサーチは、立命館大学 民秋研究室で博士研究員をされていた、庄司 淳(しょ…

第38回「分子組織化の多様な側面を理解する」Neil Champness教授

長らく更新が止まっていましたが、海外化学者インタビュー再開しました。Nature Chemistry…

排ガス原料のSAFでデリバリーフライトを実施

ANAは日本時間の10月30日、排ガスを原料とするSustainable Aviation Fuel…

Chem-Station Twitter

PAGE TOP