[スポンサーリンク]

化学者のつぶやき

顕微鏡で化学反応を見る!?

[スポンサーリンク]

 

Observations of Chemical Reactions at the Atomic Scale: Dynamics of Metal-Mediated Fullerene Coalescence and Nanotube Rupture
Chuvilin, A.; Khlobystov, A. N.; Obergfell, D.; Haluska, M.; Yang, S.; Roth, S.; Kaiser, U.
Angew. Chem. Int. Ed. 2010, 49, 193-196. DOI : 10.1002/anie.200902243

フラスコの中では一体何が起こっているのだろう……?

化学者が毎日想像する化学反応の様子を観測してしまった、インパクト抜群な論文が登場しました。

冒頭の図にある黒い点は、ジスプロシウムというランタノイド原子。始めは、カーボンナノチューブの中のフラーレンのそのまた中に入っていたこの原子が、フラーレンを喰い破り、さらにはナノチューブまで破壊してしまった――「フラーレン」「カーボンナノチューブ」といった化学を好きな人なら一度は耳にしたことのある花形分子たちが反応するその様子を、TEMを用いてリアルタイムで捉えることに成功しています。

早速その内容を見ていきましょう。

 

ナノサイズの試験管

今回映し出されている「化学反応」は、いわゆるナノピーポッドが舞台となっています。

peapod.PNG

ナノピーポッドとはフラーレンを内包したカーボンナノチューブの総称で、さやえんどうを連想させる姿からこう呼ばれています。詳しくは後述しますが、TEMという電子顕微鏡は電子線を「透過」させて像を得るので、試料はある程度薄いことが求められます。その点、カーボンナノチューブは厚み(=直径)がナノメートルサイズなのでTEMと相性が良く、ナノサイズの「試験管」として注目を集めています。実際、ランタノイド原子を内包したフラーレン自体はこの「試験管」を用いることで観測された例が以前にもありました。

では、なぜ今回、その反応までもを捉えることができたのか……?

鍵となったのは2つで、フラーレンに内包させるランタノイド原子としてジスプロシウム; Dyを選んだことと、観測に使ったTEMの電子線の出力を低くコントロールしたことでした。

 

Dy@C82

2015-06-09_08-06-09

この、一見「目玉おやじ」にも見えるもの、これがジスプロシウムを内包したフラーレンです。

不勉強にしてランタノイドについて明るくはないのですが、多くのランタノイド原子は安定な酸化状態として通常3価のみをとる一方、ジスプロシウムは4価もとり、これが大変強力な酸化剤となるとのこと。これを活性種として、ジスプロシウム内包フラーレン2分子がラジカル的に反応する機構が提案されています。

これはつまり、Dy(III)とDy(IV)による触媒サイクルが成立しているということです。言葉の厳密な意味を考えると正しくない表現かもしれませんが、一つ目のキーポイントはいわば適切な触媒を選んだことと言えると思います。

 

この反応においてジスプロシウムの酸化に効いているのが、2つ目の鍵であるTEMの電子線です。

 

TEM

TEMTransmission Electron Microscopeの略で、日本語では透過型電子顕微鏡といいます。少し乱暴なたとえですが、TEMの原理は葉っぱを太陽にかざすと葉脈が透けてみえるのと似ていて、光の代わりに加速した電子を試料に当てて、透過してきた電子を観測しています。

今回の反応の引き金となっているのはこの電子線が持つエネルギーであり、これによってジスプロシウムが酸化され、前述のような反応が進むようです。

実はこの電子線の加速電圧を調整することがミソだったようで、強すぎると(エネルギーが大きすぎると)フラーレンやナノチューブを直接破壊してしまい、その速さはTEMによる観測の時間尺度より早くなってしまうとのこと。これまで化学反応が捉えられなかったのは、ここに原因がありました。

タイトルにMetal-Mediatedとあるように、今回はエネルギーを低くコントロールし、一旦ジスプロシウムに渡す過程を踏むことで時間尺度の問題を緩和でき、このような観測が可能になったようです。

 

化学反応を直接観測したといっても、まだ原子が置換される様子が手にとるようにわかるとは言えませんが、ここまで見えるようになったのか、というのにただただ感心してしまいました。同論文のSapporting Infomationには動画もありました。大学のHPにも上がっていてどなたでも閲覧できますので、ぜひご覧下さい(コチラ)。約2分程度の動画ですが、最後の数秒であっという間にナノチューブが切断される様は一見の価値ありです。

 

ところで、この記事を書いているあいだにも化学は進歩していたようで、先日は東大の中村栄一教授がさらに詳しく化学反応を観測することに成功したようです。(Nature Chemistry, 2009, 2, 117 – 124 DOI:10.1038/NCHEM.482)こちらについても後ほど紹介したいなと思います。

 

arrow

投稿者の記事一覧

大学で有機金属触媒について研究している学生→発光材料や分子性電子素子を研究している大学教員になりました。 好きなものはバスケとお酒、よくしゃべりよく聞きよく笑うこと。 日々の研究生活で見、聞き、感じ、考えたことを発信していきます。

関連記事

  1. 不斉カルボニル触媒で酵素模倣型不斉マンニッヒ反応
  2. ボロン酸エステルをモノ・ジフルオロメチル基に変える
  3. 不均一系触媒を電極として用いる電解フロー反応を実現
  4. ニコラウ祭り
  5. シビれる(T T)アジリジン合成
  6. 学会ムラの真実!?
  7. 「天然物ケミカルバイオロジー分子標的と活性制御シンポジウム」に参…
  8. ケムステ国際版・中国語版始動!

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 人工DNAを複製可能な生物ができた!
  2. 「ペプチドリーム」東証マザーズ上場
  3. 近年の量子ドットディスプレイ業界の動向
  4. ノバルティス、米カイロンを5000億円で完全子会社に
  5. 第26回 有機化学(どうぐばこ)から飛び出す超分子(アプリケーション) – Sankaran Thayumanavan教授
  6. サラ・E・リースマン Sarah E. Reisman
  7. 磁性液体:常温で液体になる磁性体を初発見 東大大学院
  8. ネオジム磁石の調達、製造技術とビジネス戦略【終了】
  9. ケテンジチオアセタール化による一炭素増炭反応
  10. ドナルド・トゥルーラー Donald G. Truhlar

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2010年1月
 123
45678910
11121314151617
18192021222324
25262728293031

注目情報

最新記事

先端事例から深掘りする、マテリアルズ・インフォマティクスと計算科学の融合

開催日:2023/12/20 申込みはこちら■開催概要近年、少子高齢化、働き手の不足の影…

最新の電子顕微鏡法によりポリエチレン分子鎖の向きを可視化することに成功

第583回のスポットライトリサーチは、東北大学大学院 工学研究科 応用化学専攻 陣内研究室の狩野見 …

\脱炭素・サーキュラーエコノミーの実現/  マイクロ波を用いたケミカルリサイクル・金属製錬プロセスのご紹介

※本セミナーは、技術者および事業担当者向けです。脱炭素化と省エネに貢献するモノづくり技術の一つと…

【書籍】女性が科学の扉を開くとき:偏見と差別に対峙した六〇年 NSF(米国国立科学財団)長官を務めた科学者が語る

概要米国の女性科学者たちは科学界のジェンダーギャップにどのように向き合い,変えてきたのか ……

【太陽ホールディングス】新卒採用情報(2025卒)

■■求める人物像■■「大きな志と好奇心を持ちまだ見ぬ価値造像のために前進できる人…

細胞代謝学術セミナー全3回 主催:同仁化学研究所

細胞代謝研究をテーマに第一線でご活躍されている先生方をお招きし、同仁化学研究所主催の学術セミナーを全…

マテリアルズ・インフォマティクスにおける回帰手法の基礎

開催日:2023/12/06 申込みはこちら■開催概要マテリアルズ・インフォマティクスを…

プロトン共役電子移動を用いた半導体キャリア密度の精密制御

第582回のスポットライトリサーチは、物質・材料研究機構(NIMS) ナノアーキテクトニクス材料研究…

有機合成化学協会誌2023年11月号:英文特別号

有機合成化学協会が発行する有機合成化学協会誌、2023年11月号がオンライン公開されています。…

高懸濁試料のろ過に最適なGFXシリンジフィルターを試してみた

久々の、試してみたシリーズ。今回試したのはアドビオン・インターチム・サイエンティフィ…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP