[スポンサーリンク]

化学者のつぶやき

顕微鏡で化学反応を見る!?

 

Observations of Chemical Reactions at the Atomic Scale: Dynamics of Metal-Mediated Fullerene Coalescence and Nanotube Rupture
Chuvilin, A.; Khlobystov, A. N.; Obergfell, D.; Haluska, M.; Yang, S.; Roth, S.; Kaiser, U.
Angew. Chem. Int. Ed. 2010, 49, 193-196. DOI : 10.1002/anie.200902243

フラスコの中では一体何が起こっているのだろう……?

化学者が毎日想像する化学反応の様子を観測してしまった、インパクト抜群な論文が登場しました。

冒頭の図にある黒い点は、ジスプロシウムというランタノイド原子。始めは、カーボンナノチューブの中のフラーレンのそのまた中に入っていたこの原子が、フラーレンを喰い破り、さらにはナノチューブまで破壊してしまった――「フラーレン」「カーボンナノチューブ」といった化学を好きな人なら一度は耳にしたことのある花形分子たちが反応するその様子を、TEMを用いてリアルタイムで捉えることに成功しています。

早速その内容を見ていきましょう。

 

ナノサイズの試験管

今回映し出されている「化学反応」は、いわゆるナノピーポッドが舞台となっています。

peapod.PNG

ナノピーポッドとはフラーレンを内包したカーボンナノチューブの総称で、さやえんどうを連想させる姿からこう呼ばれています。詳しくは後述しますが、TEMという電子顕微鏡は電子線を「透過」させて像を得るので、試料はある程度薄いことが求められます。その点、カーボンナノチューブは厚み(=直径)がナノメートルサイズなのでTEMと相性が良く、ナノサイズの「試験管」として注目を集めています。実際、ランタノイド原子を内包したフラーレン自体はこの「試験管」を用いることで観測された例が以前にもありました。

では、なぜ今回、その反応までもを捉えることができたのか……?

鍵となったのは2つで、フラーレンに内包させるランタノイド原子としてジスプロシウム; Dyを選んだことと、観測に使ったTEMの電子線の出力を低くコントロールしたことでした。

 

Dy@C82

2015-06-09_08-06-09

この、一見「目玉おやじ」にも見えるもの、これがジスプロシウムを内包したフラーレンです。

不勉強にしてランタノイドについて明るくはないのですが、多くのランタノイド原子は安定な酸化状態として通常3価のみをとる一方、ジスプロシウムは4価もとり、これが大変強力な酸化剤となるとのこと。これを活性種として、ジスプロシウム内包フラーレン2分子がラジカル的に反応する機構が提案されています。

これはつまり、Dy(III)とDy(IV)による触媒サイクルが成立しているということです。言葉の厳密な意味を考えると正しくない表現かもしれませんが、一つ目のキーポイントはいわば適切な触媒を選んだことと言えると思います。

 

この反応においてジスプロシウムの酸化に効いているのが、2つ目の鍵であるTEMの電子線です。

 

TEM

TEMTransmission Electron Microscopeの略で、日本語では透過型電子顕微鏡といいます。少し乱暴なたとえですが、TEMの原理は葉っぱを太陽にかざすと葉脈が透けてみえるのと似ていて、光の代わりに加速した電子を試料に当てて、透過してきた電子を観測しています。

今回の反応の引き金となっているのはこの電子線が持つエネルギーであり、これによってジスプロシウムが酸化され、前述のような反応が進むようです。

実はこの電子線の加速電圧を調整することがミソだったようで、強すぎると(エネルギーが大きすぎると)フラーレンやナノチューブを直接破壊してしまい、その速さはTEMによる観測の時間尺度より早くなってしまうとのこと。これまで化学反応が捉えられなかったのは、ここに原因がありました。

タイトルにMetal-Mediatedとあるように、今回はエネルギーを低くコントロールし、一旦ジスプロシウムに渡す過程を踏むことで時間尺度の問題を緩和でき、このような観測が可能になったようです。

 

化学反応を直接観測したといっても、まだ原子が置換される様子が手にとるようにわかるとは言えませんが、ここまで見えるようになったのか、というのにただただ感心してしまいました。同論文のSapporting Infomationには動画もありました。大学のHPにも上がっていてどなたでも閲覧できますので、ぜひご覧下さい(コチラ)。約2分程度の動画ですが、最後の数秒であっという間にナノチューブが切断される様は一見の価値ありです。

 

ところで、この記事を書いているあいだにも化学は進歩していたようで、先日は東大の中村栄一教授がさらに詳しく化学反応を観測することに成功したようです。(Nature Chemistry, 2009, 2, 117 – 124 DOI:10.1038/NCHEM.482)こちらについても後ほど紹介したいなと思います。

 

The following two tabs change content below.
arrow

arrow

大学で有機金属触媒について研究している学生です。 好きなものはバスケとお酒、よくしゃべりよく聞きよく笑うこと。 日々の研究生活で見、聞き、感じ、考えたことを発信していきます

関連記事

  1. オキソニウムカチオンを飼いならす
  2. 磁気ナノ粒子でガン細胞を選別する
  3. 素粒子と遊ぼう!
  4. 論文コレクター必見!WindowsでPDFを全文検索する方法
  5. 2001年ノーベル化学賞『キラル触媒を用いる不斉水素化および酸化…
  6. Carl Boschの人生 その2
  7. で、その研究はなんの役に立つの?
  8. 産業紙閲覧のすゝめ

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 光延反応 Mitsunobu Reaction
  2. Ugi反応を利用できるアルデヒドアルデヒド・イソニトリル・カルボン酸・アミン
  3. 化学物質恐怖症への処方箋
  4. ケムステ10年回顧録― 副代表版
  5. 投票!2016年ノーベル化学賞は誰の手に??
  6. Chemistry Reference Resolverをさらに便利に!
  7. 細胞を模倣したコンピューター制御可能なリアクター
  8. バナジル(アセチルアセトナト) Vanadyl(IV) acetylacetonate
  9. Thieme-IUPAC Prize in Synthetic Organic Chemistry ―受賞者一覧
  10. 研究活動の御用達!PDF加工のためのクラウドサービス

関連商品

注目情報

注目情報

最新記事

ケムステイブニングミキサー2019ー報告

3月16日から19日の日本化学会第99春季年会に参加されたみなさま、おつかれさまでした!甲南大学…

モリブデンのチカラでニトロ化合物から二級アミンをつくる

川上原料のニトロアレーンとアリールボロン酸を用いた二級アミン合成法が報告された。空気下で安定なモリブ…

化学的に覚醒剤を隠す薬物を摘発

化学変化を加えると覚醒剤に加工できる指定薬物を密輸しようとしたなどとして、東京税関成田支署と成田空港…

ニコラス-ターナー Nicholas Turner

ニコラス ターナー (Nicholas Turner, 1960年6月2日イギリス、ケント州Orpi…

博士課程に進学したあなたへ

どういった心構えで研究生活を送るべきかについて、昨年ですが面白い記事がNatureに出ていたので、紹…

【書籍】フロンティア軌道論で理解する有機化学

「軌道の見方がわかる!有機反応を一貫して軌道論に基づいて解説。新しい有機化学を切り拓く読者へ…

Chem-Station Twitter

PAGE TOP