[スポンサーリンク]

スポットライトリサーチ

ナノ合金の結晶構造制御法の開発に成功 -革新的材料の創製へ-

[スポンサーリンク]

第145回目のスポットライトリサーチは、京都大学大学院理学研究科北川研究室の博士学生・張権さんにお願いしました。

北川研究室では、様々な機能性ナノ合金材料の設計・合成が行われています。特に、「元素間融合」と呼ばれる技術はその中でも特筆すべきものです。例えば、ロジウム(原子番号45)と銀(原子番号47)からなる合金がパラジウム(原子番号46)のような水素吸蔵性を持つことを報告しています。

今回の研究はナノ合金の精密設計に関するもので、以下のとおりNature Communication誌に掲載されました(オープンアクセスなので、どなたでも読めます)。また、プレスリリースで注目されています。

Selective control of fcc and hcp crystal structures in Au–Ru solid-solution alloy nanoparticles

Q. Zhang, K. Kusada, D. Wu, T. Yamamoto, T. Toriyama, S. Matsumura, S. Kawaguchi, Y. Kubota, H. Kitagawa

Nature Communications 2018, 9, 510. DOI: 10.1038/s41467-018-02933-6

今回インタビュー内容は英語ですが、分かりやすく書いていただきました。それでは、研究の詳細をご覧ください!

Q1. 今回のプレス対象となったのはどんな研究ですか?

The crystal structure is one of the most dominant factors that strongly affect the properties of an alloy because the electronic and surface structures change drastically with the crystal structure. However, to date, the influence of the crystal structure has rarely been studied because control of the crystal structure of alloy NPs is still a great challenge. In this work, we propose a new approach for selective control of the crystal structure in solid-solution alloys by using a chemical reduction method. By precisely tuning the reduction speed of the metal precursors, we demonstrated the first example of selective control by synthesizing fcc- and hcp-AuRu3 alloy nanoparticles. The alloy adopts a fcc structure when the Au precursor starts to be reduced slightly earlier, while it adopts an hcp structure when the reduction of Ru precursor begins slightly earlier.

金属組成を変えずに固溶体合金の構造を合成条件(構成元素のどちらの金属塩をわずかに先に還元させるか)によって選択的に作り分けることができたという点が最も大きな成果です。

Q2. 本研究テーマについて、自分なりに工夫したところ、思い入れがあるところを教えてください。

In general, the properties of alloy NPs have been controlled by the size, morphology, constituent elements and compositional ratio. The influence of the crystal structure on the properties of alloy NPs has rarely been studied. In this work, by proposing a new approach for selective control of the crystal structure, we introduced a new material design degree of freedom, “crystal structure”, to create novel chemical and physical properties for alloy NPs. In addition, our concept can provide a new method for controlling the crystal structure of not only Au–Ru system but also other alloy systems consisting of several elements that adopt different structures.

Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?

The key step for this research is the reduction speeds control of the metal ions. We believe the reduction speed can be adjusted through choosing suitable metal precursors. Therefore, the reduction speeds of precursors with different ligand were first tested. Then, the precursors were combined to form the alloy NPs. This part of work takes around one year. I remember every day four or five syntheses were conducted but most of them were failed results. After carefully analyzing these experimental results, we gradually approach the final achievement. So, I think most of the good results cannot be achieved for few experiments. In addition, please carefully analyze your experimental results including the failed one, because even the fail experimental results may provide you some useful information.

Q4. 将来は化学とどう関わっていきたいですか?

Nowadays, with the increasing environmental concerns and accelerated consuming of fossil fuels, search for the alternative energy is becoming a significant issue for worldwide researchers. Chemistry plays an important role in developing the new clean energy. For metal and alloy NPs, one of the most important applications is catalysis on reactions for clean energy conversion for example, fuel cells, water electrolysis, metal–air batteries, and CO2 to fuel conversion. At present, we are focused on the developing of new solid solution alloy NPs and the basic property control of these alloy NPs. We will further explore their applications on catalysis clean energy conversion reactions and hope we can make a contribution to the development of the clean energy.

Q5. 最後に、読者の皆さんにメッセージをお願いします。

As a researcher in chemistry, we always meet some challenges and difficulties during the research. The process for solve these problems may take us a large amount of time. It is easy to make us feel disappointed. When you are in these situations, please keep optimistic and believe that there are no obstacles that cannot be overcome. Discussion is a very useful way to help you extricate yourself from a difficult situation and save your time on solving the problems. Please enjoy the fun of research and hope every young researcher can harvest plentiful result.

関連リンク

• 京都大学大学院理学研究科北川研究室

• 京都大学プレスリリース

研究者の略歴

名前:張 権 (チョウ ケン, ZHANG QUAN)

所属: 京都大学 大学院理学研究科 化学専攻 固体物性化学研究室
略歴:1988年9月、中国河南生まれ。2010年6月、中国河南大学卒業。2013年3月、中国東華大学卒業。2014年10月、京都大学大学院理学研究科研究生(北川 宏 教授)。2015年4月、京都大学大学院理学研究科化学専攻博士後期課程編入学(北川 宏 教授)。
研究テーマ:固溶体ナノ粒子の合成及び電極触媒特性の研究

The following two tabs change content below.

Orthogonene

有機合成を専門にするシカゴ大学化学科PhD3年生です。 趣味はスポーツ(器械体操・筋トレ・ランニング)と読書です。 ゆくゆくはアメリカで教授になって活躍するため、日々精進中です。 http://donggroup-sites.uchicago.edu/

関連記事

  1. 米国へ講演旅行へ行ってきました:Part III
  2. シリカゲルはメタノールに溶けるのか?
  3. 二重芳香族性を示す化合物の合成に成功!
  4. 「銅触媒を用いた不斉ヒドロアミノ化反応の開発」-MIT Buch…
  5. HACCP制度化と食品安全マネジメントシステムーChemical…
  6. とある水銀化合物のはなし チメロサールとは
  7. イボレノリドAの単離から全合成まで
  8. 緑色蛍光タンパク質を真似してRNAを光らせる

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 高分子材料中の微小異物分析技術の実際【終了】
  2. 2016年1月の注目化学書籍
  3. ストーク エナミン Stork Enamine
  4. アカデミックから民間企業への転職について考えてみる 第2回
  5. PdとTiがVECsの反応性をひっくり返す?!
  6. 含ケイ素三重結合化合物(Si≡Mo、Si≡C)
  7. 2010年化学10大ニュース【Part2】
  8. キラルアニオン相関移動-パラジウム触媒系による触媒的不斉1,1-ジアリール化反応
  9. 理研:23日に一般公開、「実験ジャー」も登場--和光 /埼玉
  10. スルホニルフルオリド

関連商品

注目情報

注目情報

最新記事

有機合成化学協会誌2019年11月号:英文版特集号

有機合成化学協会が発行する有機合成化学協会誌、2019年11月号がオンライン公開されました。…

製品開発職を検討する上でおさえたい3つのポイント

基礎研究と製品開発は、目的や役割がそれぞれ異なります。しかし、求人情報の応募要件を見てみると「〇〇の…

二刀流のホスフィン触媒によるアトロプ選択的合成法

不斉付加環化反応による新奇アリールナフトキノン合成法が報告された。2つの機能を有する不斉ホスフィン触…

ヒドロゲルの新たな力学強度・温度応答性制御法

第230回のスポットライトリサーチは、東京農工大学大学院工学府(村岡研究室)・石田敦也さんにお願い致…

光誘導アシルラジカルのミニスキ型ヒドロキシアルキル化反応

可視光照射条件下でのアジン類のミニスキ型ヒドロキシアルキル化反応が開発された。官能基許容性が高いため…

イオン交換が分子間電荷移動を駆動する協奏的現象の発見

第229回のスポットライトリサーチは、東京大学大学院 新領域創成科学研究科(竹谷・岡本研究室)・山下…

Chem-Station Twitter

PAGE TOP