[スポンサーリンク]

スポットライトリサーチ

ナノ合金の結晶構造制御法の開発に成功 -革新的材料の創製へ-

[スポンサーリンク]

第145回目のスポットライトリサーチは、京都大学大学院理学研究科北川研究室の博士学生・張権さんにお願いしました。

北川研究室では、様々な機能性ナノ合金材料の設計・合成が行われています。特に、「元素間融合」と呼ばれる技術はその中でも特筆すべきものです。例えば、ロジウム(原子番号45)と銀(原子番号47)からなる合金がパラジウム(原子番号46)のような水素吸蔵性を持つことを報告しています。

今回の研究はナノ合金の精密設計に関するもので、以下のとおりNature Communication誌に掲載されました(オープンアクセスなので、どなたでも読めます)。また、プレスリリースで注目されています。

Selective control of fcc and hcp crystal structures in Au–Ru solid-solution alloy nanoparticles

Q. Zhang, K. Kusada, D. Wu, T. Yamamoto, T. Toriyama, S. Matsumura, S. Kawaguchi, Y. Kubota, H. Kitagawa

Nature Communications 2018, 9, 510. DOI: 10.1038/s41467-018-02933-6

今回インタビュー内容は英語ですが、分かりやすく書いていただきました。それでは、研究の詳細をご覧ください!

Q1. 今回のプレス対象となったのはどんな研究ですか?

The crystal structure is one of the most dominant factors that strongly affect the properties of an alloy because the electronic and surface structures change drastically with the crystal structure. However, to date, the influence of the crystal structure has rarely been studied because control of the crystal structure of alloy NPs is still a great challenge. In this work, we propose a new approach for selective control of the crystal structure in solid-solution alloys by using a chemical reduction method. By precisely tuning the reduction speed of the metal precursors, we demonstrated the first example of selective control by synthesizing fcc- and hcp-AuRu3 alloy nanoparticles. The alloy adopts a fcc structure when the Au precursor starts to be reduced slightly earlier, while it adopts an hcp structure when the reduction of Ru precursor begins slightly earlier.

金属組成を変えずに固溶体合金の構造を合成条件(構成元素のどちらの金属塩をわずかに先に還元させるか)によって選択的に作り分けることができたという点が最も大きな成果です。

Q2. 本研究テーマについて、自分なりに工夫したところ、思い入れがあるところを教えてください。

In general, the properties of alloy NPs have been controlled by the size, morphology, constituent elements and compositional ratio. The influence of the crystal structure on the properties of alloy NPs has rarely been studied. In this work, by proposing a new approach for selective control of the crystal structure, we introduced a new material design degree of freedom, “crystal structure”, to create novel chemical and physical properties for alloy NPs. In addition, our concept can provide a new method for controlling the crystal structure of not only Au–Ru system but also other alloy systems consisting of several elements that adopt different structures.

Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?

The key step for this research is the reduction speeds control of the metal ions. We believe the reduction speed can be adjusted through choosing suitable metal precursors. Therefore, the reduction speeds of precursors with different ligand were first tested. Then, the precursors were combined to form the alloy NPs. This part of work takes around one year. I remember every day four or five syntheses were conducted but most of them were failed results. After carefully analyzing these experimental results, we gradually approach the final achievement. So, I think most of the good results cannot be achieved for few experiments. In addition, please carefully analyze your experimental results including the failed one, because even the fail experimental results may provide you some useful information.

Q4. 将来は化学とどう関わっていきたいですか?

Nowadays, with the increasing environmental concerns and accelerated consuming of fossil fuels, search for the alternative energy is becoming a significant issue for worldwide researchers. Chemistry plays an important role in developing the new clean energy. For metal and alloy NPs, one of the most important applications is catalysis on reactions for clean energy conversion for example, fuel cells, water electrolysis, metal–air batteries, and CO2 to fuel conversion. At present, we are focused on the developing of new solid solution alloy NPs and the basic property control of these alloy NPs. We will further explore their applications on catalysis clean energy conversion reactions and hope we can make a contribution to the development of the clean energy.

Q5. 最後に、読者の皆さんにメッセージをお願いします。

As a researcher in chemistry, we always meet some challenges and difficulties during the research. The process for solve these problems may take us a large amount of time. It is easy to make us feel disappointed. When you are in these situations, please keep optimistic and believe that there are no obstacles that cannot be overcome. Discussion is a very useful way to help you extricate yourself from a difficult situation and save your time on solving the problems. Please enjoy the fun of research and hope every young researcher can harvest plentiful result.

関連リンク

• 京都大学大学院理学研究科北川研究室

• 京都大学プレスリリース

研究者の略歴

名前:張 権 (チョウ ケン, ZHANG QUAN)

所属: 京都大学 大学院理学研究科 化学専攻 固体物性化学研究室
略歴:1988年9月、中国河南生まれ。2010年6月、中国河南大学卒業。2013年3月、中国東華大学卒業。2014年10月、京都大学大学院理学研究科研究生(北川 宏 教授)。2015年4月、京都大学大学院理学研究科化学専攻博士後期課程編入学(北川 宏 教授)。
研究テーマ:固溶体ナノ粒子の合成及び電極触媒特性の研究

Orthogonene

投稿者の記事一覧

有機合成を専門にするシカゴ大学化学科PhD3年生です。
趣味はスポーツ(器械体操・筋トレ・ランニング)と読書です。
ゆくゆくはアメリカで教授になって活躍するため、日々精進中です。

http://donggroup-sites.uchicago.edu/

関連記事

  1. 鴻が見る風景 ~山本尚教授の巻頭言より~
  2. ギ酸ナトリウムでconPETを進化!
  3. 金属材料・セラミックス材料領域におけるマテリアルズ・インフォマテ…
  4. ゴードン会議に参加して:ボストン周辺滞在記 PartI
  5. 論文執筆で気をつけたいこと20(1)
  6. ノーベル化学賞は化学者の手に
  7. もう別れよう:化合物を分離・精製する|第5回「有機合成実験テクニ…
  8. アマゾン・アレクサは化学者になれるか

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. Co(II)-ポルフィリン触媒を用いた酸素酸化によるフェノールのカップリング反応
  2. 「アジア発メジャー」狙う大陽日酸、欧州市場に参入
  3. MEDCHEM NEWS 31-4号「RNA制御モダリティ」
  4. 亜鉛挿入反応へのLi塩の効果
  5. 三井物と保土谷 多層カーボンナノチューブを量産
  6. 構造化学の研究を先導する100万件のビッグデータ
  7. 有機合成テクニック集[ケムステ版]
  8. 第11回ケムステVシンポジウム「最先端精密高分子合成」を開催します!
  9. 【マイクロ波化学(株)ウェビナー】 #環境 #SDGs マイクロ波によるサステナブルなものづくり (プラ分解、フロー合成、フィルム、乾燥、焼成)
  10. エッフェル塔

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2018年6月
 123
45678910
11121314151617
18192021222324
252627282930  

注目情報

最新記事

マリンス有機化学(上)-学び手の視点から-

概要親しみやすい会話形式を用いた現代的な教育スタイルで有機化学の重要概念を学べる標準教科書.…

【大正製薬】キャリア採用情報(正社員)

<求める人物像>・自ら考えて行動できる・高い専門性を身につけている・…

国内初のナノボディ®製剤オゾラリズマブ

ナノゾラ®皮下注30mgシリンジ(一般名:オゾラリズマブ(遺伝子組換え))は、A…

大正製薬ってどんな会社?

大正製薬は病気の予防から治療まで、皆さまの健康に寄り添う事業を展開しています。こ…

一致団結ケトンでアレン合成!1,3-エンインのヒドロアルキル化

ケトンと1,3-エンインのヒドロアルキル化反応が開発された。独自の配位子とパラジウム/ホウ素/アミン…

ベテラン研究者 vs マテリアルズ・インフォマティクス!?~ 研究者としてMIとの正しい向き合い方

開催日 2024/04/24 : 申込みはこちら■開催概要近年、少子高齢化、働き手の不足…

第11回 慶應有機化学若手シンポジウム

シンポジウム概要主催:慶應有機化学若手シンポジウム実行委員会共催:慶應義塾大…

薬学部ってどんなところ?

自己紹介Chemstationの新入りスタッフのねこたまと申します。現在は学部の4年生(薬学部)…

光と水で還元的環化反応をリノベーション

第609回のスポットライトリサーチは、北海道大学 大学院薬学研究院(精密合成化学研究室)の中村顕斗 …

ブーゲ-ランベルト-ベールの法則(Bouguer-Lambert-Beer’s law)

概要分子が溶けた溶液に光を通したとき,そこから出てくる光の強さは,入る前の強さと比べて小さくなる…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP