[スポンサーリンク]

一般的な話題

日化年会に参加しました:たまたま聞いたA講演より

[スポンサーリンク]

 先週の土曜から昨日まで、立命館大学(BKCキャンパス)で日本化学会年会が行われましたみんなオツカレ!

筆者は数年ぶり久々の参加で、発表なく聴講しただけでしたが疲れましたね何が疲れるって、社内の発表会とはやる気が違って発表してる方の真剣さが凄いですね!。特に一般A講演では「初めての発表」という方も多く、緊張がこちらに伝わってくるようでした。

もちろん特別講演や一般B講演は内容が濃く面白く、「なるほど」と説得性もある素晴らしい講演ばかり。一方で、10分で次、10分でまた次へと流れて行く一般A講演をくのは年会ならではの魅力。短時間で色々な研究を聞けてお得感満載、でも頭の切り替えが追いつかなくてパンク寸前でした。。。

今日はそんなA講演の中からたまたま聞いた1演題を、筆者の独断と偏見で紹介。

 

2-アルコキシピリジンからN置換ピリドンの合成

(3F5-44) 1価のイリジウムを触媒として用いた、炭素-酸素結合活性化を経る2-アルコキシピリジンからN置換ピリドンの合成
(早大先進理工)○笠直人・潘世光・柴田高範

130326-0002.jpg聴講メモ:演者らは(別目的での副反応から) 2-benzyloxypyridine がIr錯体触媒 10mol% [Ir(cod)2]BRAF により N-benzyloxypyridone へと変換される事を見いだした。一方、ベンジル炭素上をMe置換する(R2 = Ph, R3 = Me)と収率低下し、代わりに無置換ピリドンが副成する。副成物はβ-水素脱離によるものと考え、添加剤を検討したところNa塩 (1.1eq. NaOAc) 添加が効果的たっだ。アリル/ベンジル基のO→N移動ピリドン合成は既報であるが、本手法はアルキル基 (R2 = Et, R3 = Me)でも進行する (収率64%) 初例である。ベンジル位不斉炭素がキラルな基質では、残念ながら反応により光学収率が下がる。

 

置換ピリジンやピリドンは創薬化学ではよく用いる構造で、「水素結合能」「適度な脂溶性」「置換の多様性」などの面からドラッグデザインに使い易いフラグメントです。 一方、合成面ではこれらの作り分け、および構造解析が課題となります。

2-hydroxypyridine のアルキル化により合成しようとした場合、NとOの2つの反応点があるため、アルコキシピリジンとN-置換ピリドンの両方が得られる可能性があります。両方得られるたならば比較から構造決定し易いのですが、問題は選択的に一方が得られた場合で…

 「どうやって構造決定するの?」

いちおう、IR測定によりカルボニル振動が見えるかどうかは判断材料になりますが、「見えないからピリジン」って言って良いの?とか、そもそも他の位置にカルボニル置換基がある!とか、構造決定手段がIRのみというのはなかなかにリスキーです。かといってX線結晶構造解析する労力をかけるものか??

別経路として、2-halopyridineに求核置換でアルコキシを差す、という経路もあります。この場合、アルコキシピリジンのみが得られます。なので、構造決定に悩まずに済みますね。

 

「でもピリドン作りたかったら?」…困った

 そんなジレンマに悩むピリドンユーザーへの朗報。アルコキシピリジンを合成しておいて、それを移動させてN-置換ピリドンを合成するというのは、構造決定面でも有利な実にリーズナブルな分子変換だと感じました。まだearly workで「展開はこれから」という雰囲気でしたが、アルキル基のバリエーション、N2個の環への適用、光学収率の向上と夢が膨らみます。ぜひ使い易い反応に早く仕上げて頂きたいものです。期待しています。

 

 

年会の意義

読んだ人がどれだけ居るか知りませんが、プログラムの最初に玉尾会長と中條実行委員長の対談が載っております。年会の意義について「鍛錬と教育の”場”」「人と情報の出会いの”場”」と話しておられ、また「いろいろな方と出会うことによって”友=人脈”を作って欲しい」「年会に言ってこい。百人の友を作ってこい」と言われてます。

上記記事も(予習ではノーマークで)たまたま聞いた発表で「あれ?面白いかも」と思ったやつです。A講演の中でも素敵な”情報”との出会いがありますね。また”人”の面でも、ケムステスタッフ間交流のほか、お世話頂いた先生方/試薬会社さん、大学の先輩/後輩、あとはお世話になった「反応」の論文著者さん、面白かった講演演者さん等々様々な方々と交流させて頂きまして、大満足です。Facebookのお友達も10人増えました!

 

あれ、10人?玉尾会長設定の「100人」の1割ですか…残念w

 

関連記事

  1. 武装抗体―化学者が貢献できるポイントとは?
  2. 光で形を変える結晶
  3. 息に含まれた0.0001%の成分で健康診断
  4. HACCP制度化と食品安全マネジメントシステムーChemical…
  5. 「超分子重合によるp-nヘテロ接合の構築」― インド国立学際科学…
  6. 採用面接で 「今年の日本化学会では発表をしますか?」と聞けば
  7. 親水性ひも状分子を疎水性空間に取り込むナノカプセル
  8. ペプチド縮合を加速する生体模倣型有機触媒

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 化学の祭典!国際化学オリンピック ”53rd IChO 2021 Japan” 開幕!
  2. 学振申請書を磨き上げる11のポイント [文章編・後編]
  3. 来年の応募に向けて!:SciFinder Future Leaders 2018 体験記
  4. 光触媒を用いるスピロ環合成法が創薬の未来を明るく照らす
  5. 求電子的トリフルオロメチル化 Electrophilic Trifluoromethylation
  6. トリフルオロ酢酸パラジウム(II) : Trifluoroacetic Acid Palladium(II) Salt
  7. ピロティ・ロビンソン ピロール合成 Piloty-Robinson Pyrrole Synthesis
  8. バルツ・シーマン反応 Balz-Schiemann Reaction
  9. 化学実験系YouTuber
  10. トリプトファン選択的なタンパク質修飾反応の開発

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

ケムステSlack、開設二周年!

Chem-Stationが立ち上げた化学系オープンコミュニティ、ケムステSlackを開設して早くも二…

過酸がC–H結合を切ってメチル基を提供する

光増感剤とニッケル触媒を用いたC(sp3)–Hメチル化が開発された。合成終盤でのメチル化に威力を発揮…

化学の祭典!国際化学オリンピック ”53rd IChO 2021 Japan” 開幕!

2021年7月「オリンピック/パラリンピック 東京2020大会」も無観客ではあるものの無事開幕されま…

O-脱メチル化・脱アルキル化剤 基礎編

メトキシ基→ヒドロキシ基への変換、割と苦戦しますよね。保護基と呼ぶには利便性が数歩足…

マイクロ波化学のカーボンニュートラルや循環型社会におけるアプリケーションや事業状況

当社のマイクロ波プラットフォーム技術および工業化知見を活用し、アクリル樹脂の分解に必要なエネルギーを…

NMRデータ処理にもサブスクの波? 新たなNMRデータ処理ソフトウェアが登場

NMRメーカーである日本電子のイギリス法人、JEOL UKが6月、WindowsとmacOSの両方で…

芳香環交換反応を利用したスルフィド合成法の開発: 悪臭問題に解決策

第 326回のスポットライトリサーチは、早稲田大学理工学術院 山口潤一郎研究室 …

ゼナン・バオ Zhenan Bao

ゼナン(Zhenan Bao, 1970年xx月xx日-)は、アメリカの有機材料科学者、カーボンナノ…

Chem-Station Twitter

PAGE TOP