[スポンサーリンク]

化学者のつぶやき

炭素をBNに置き換えると…

[スポンサーリンク]

有機化学の主役元素といえば、炭素であることに異論を唱える人はいないでしょう。アルカンやベンゼンをはじめ、有機化合物の主骨格は炭素であり「炭素を中心として考える」のが有機化学の基本です。しかし一方で、有機化学には炭素以外の元素がなくてはならないことも言をもたない事実です。現代の有機化学ではあらゆる元素を駆使して多種多様な研究が展開されています。

たとえば「化合物中の炭素原子を他の元素に置き換える」という研究もその1つです。

ご存知のように6つの炭素骨格からなるベンゼンの炭素原子1つを窒素に”置き換えた”ピリジンはベンゼンとは全く異なった性質を示します(図1)。

 

図1

図1 ベンゼンとピリジン

 

炭素だけの5員環であるシクロペンタジエンは脱プロトン化し、アニオンとなると6π電子をもつため芳香族性を示します。一方で、シクロペンタジエンの炭素を1つ窒素、酸素、硫黄に”置き換えた”、ピロールやフラン、チオフェンといったヘテロ芳香環はヘテロ原子の非共有電子対がπ共役系に参加することで電子的に中性な状態で芳香族性をもちます。

上記に述べたものは、置き換えなくとも既に存在していた化合物ですが、化学合成の力で置き換え、未知の化合物をつくる研究が昔より行われています。例えば、ボロールやシロール、ホスホールなど、ホウ素、ケイ素、リンに元素に置き換えた5員環も合成されています。また、ゲルマニウム、スズ、最近では鉛といった炭素と同じ14族の原子を一つ含む芳香環が合成されたことが話題になりました(図2)[1]

 

図2. 様々なヘテロ芳香環

図2. 様々なヘテロ芳香環

 

炭素をホウ素と窒素で置き換えた化合物

さて、そんな「元素置き換え研究」の中の1つとして、炭素原子をホウ素と窒素で置き換えた化合物も古くから注目されています。例えば、ベンゼンの炭素をすべて窒素とホウ素に置き換えた、ボラジン(borazine)が最も有名で、1926年と100年近く前に合成されています。ボラジンはベンゼンと同じ電子構造をもつにも関わらず、電子不足なホウ素と電子豊富な窒素に由来する電荷の偏りがあり水やアルコールに対し高い反応性を示すことが知られています(図3左)。

では、ベンゼンと同じ六員環の飽和炭化水素であるシクロヘキサンを窒素とホウ素で置き換えた化合物をご存知でしょうか?この化合物はシクロトリボラザン(cycloborazane)といいます。1960年にG. H. DahlとR. Schaeffによって合成されました[2]。この化合物もシクロヘキサンに比べ反応性が高い(当たり前かもしれませんが)ということ以外には詳細な研究例はありません(図3右)。

 

図3

図3. CをBNにすべて置き換える

 

シクロヘキサンの炭素原子を2つだけ置き換える:1,2-BNシクロヘキサン

ではシクロヘキサンの2つの炭素原子だけを一組のBNに置き換えた化合物1,2-BNシクロヘキサン(1,2-BN cyclohexane)はどうでしょうか?実は、2011年になってはじめて合成が達成されたのです[3]。こんな単純な化合物がごく最近まで合成されていなかったなんて少し驚きますね。方法は以下に図のみ示します(図4. 詳細は論文にて)。

 

図4

図4. 1,2-BNシクロヘキサンの合成と構造

 

この1,2-BNシクロヘキサンはシクロヘキサンと同様にイス型のコンホメーションをとりますが、ボラジンやシクロボラザンのように炭素原子と置き換えられたBNによってシクロヘキサンにはない反応性を示します。塩酸と容易に反応したり、加熱することによって3量化してBNからなる6員環を形成したりします(図5)。このように炭素原子を主骨格とする元の化合物と同じ構造をとる一方で、全く異なった反応性を示す分子が創成できるのがこの研究の醍醐味の一つではないでしょうか。

 

図6

図5. 1,2-BNシクロヘキサンの反応

 

シクロヘキサンの炭素原子を4つ置き換える: ビスBNシクロヘキサン

今年(2015年)に入って、シクロトリボラザンと1,2-BNシクロヘキサンの中間の化合物であるビスBNシクロヘキサンの合成が報告されました(図6)[4]。この合成によってシクロヘキサンのBNシリーズが全て合成されたことになります。この化合物はC, B, Nを2つずつ含む対称な分子であり、他の化合物同様にイス型のコンホメーションをとる極めてシンプルな化合物です。

 

図5

図6. ビスBNシクロヘキサンの合成と構造

 

この化合物はただ構造が面白いだけではありません。150 °Cという高温に晒されても分解などを起こさない一方で、パラジウムやルテニウム触媒を作用させることにより速やかに2量化して2当量の水素ガスを放出します(図7)。同じBNシクロヘキサンシリーズであるシクロトリボラザンや1,2-BNシクロヘキサンは150 °Cで分解してしまうのに対し、このビスBNシクロヘキサンは熱安定性が高く、燃料電池自動車などに搭載する水素貯蔵剤として有用な材料となり得ると著者らは述べています。また、2量化の形式がパラジウム触媒を用いた場合とルテニウム触媒を用いた場合で異なるという奇妙な挙動を示します。

 

図6

図 7. ビスBNシクロヘキサンの2量化と水素の放出

 

以上今回は、環状の炭素化合物を窒素とホウ素に置き換えた化合物について紹介しましたが、BNに限らず炭素以外の元素は山ほどあります。

化合物の炭素原子を他の原子に置き換えるという研究は、前人未到化合物への挑戦だけでなく未知の機能を有している可能性があるため面白いです。何より、合成や物性、機能を求めるのは難しいこともあるかもしれませんが、非常にわかりやすい!役に立つ立たないという議論は最近よく聞かれますが(もちろん役に立ったほうがよりよいですが)こういった化学者の興味で動ける基礎研究がなくならないでほしいと切に思います。

次は何が出てくるのか、わくわくします。

 

参考文献

  1. Saito, M. et al. Science 2010, 328, 339. DOI: 10.1126/science.1183648
  2. Dahl, G. H. et al. J. Am. Chem. Soc. 1961, 83, 3032. DOI: 10.1021/ja01475a014
  3. Liu, S.-Y. et al. J. Am. Chem. Soc. 2011, 133, 13006. DOI: 10.1021/ja206497x
  4. Liu, S.-Y. et al. J. Am. Chem. Soc. 2015, 137, 134. DOI: 10.1021/ja511766p

 

関連書籍

bona

bona

投稿者の記事一覧

愛知で化学を教えています。よろしくお願いします。

関連記事

  1. 春季ACSMeetingに行ってきました
  2. Reaxys Prize 2011発表!
  3. 2011年人気記事ランキング
  4. 2008年イグノーベル賞決定!
  5. カチオン性三核Pd触媒でC–I結合選択的にカップリングする
  6. V字型分子が実現した固体状態の優れた光物性
  7. CYP総合データベース: SuperCYP
  8. ケムステスタッフ Zoom 懇親会を開催しました【後編】

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 反応機構を書いてみよう!~電子の矢印講座・その1~
  2. 書物から学ぶ有機化学 3
  3. カストロ・ステファンス カップリング Castro-Stephens Coupling
  4. ホウ素から糖に手渡される宅配便
  5. ぼっち学会参加の極意
  6. カーボンナノベルト合成初成功の舞台裏 (1)
  7. スルホニル保護基 Sulfonyl Protective Group
  8. Reaxysレクチャー&第9回平田メモリアルレクチャー
  9. ストライカー試薬 Stryker’s Reagent
  10. 緑色蛍光タンパク /Green Fluorescent Protein (GFP)

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

高分子化学をふまえて「神経のような動きをする」電子素子をつくる

第267回のスポットライトリサーチは、東北大学大学院工学研究科 バイオ工学専攻 三ツ石研究室 助教の…

アルケンのエナンチオ選択的ヒドロアリール化反応

パラジウム触媒を用いたアルケンの還元的Heck型ヒドロアリール化反応が開発された。容易に着脱可能なキ…

第109回―「サステイナブルな高分子材料の創製」Andrew Dove教授

第109回の海外化学者インタビューは、アンドリュー・ダヴ教授です。ワーウィック大学化学科に所属(訳注…

蛍光異方性 Fluorescence Anisotropy

蛍光異方性(fluorescence anisotropy)とは溶液中で回転する分子の回転速…

(–)-Spirochensilide Aの不斉全合成

(–)-Spirochensilide Aの初の不斉全合成が達成された。タングステンを用いたシクロプ…

第108回―「Nature Chemistryの編集長として」Stuart Cantrill博士

第108回の海外化学者インタビューは、スチュアート・カントリル博士です。Nature Chemist…

化学工業で活躍する有機電解合成

かつて化学工業は四大公害病をはじめ深刻な外部不経済をもたらしましたが、現代ではその反省を踏まえ、安全…

細胞内の温度をあるがままの状態で測定する新手法の開発 ~「水分子」を温度計に~

第266回のスポットライトリサーチは、東北大学大学院薬学研究科 中林研究室 修士二年生の杉村 俊紀(…

Chem-Station Twitter

PAGE TOP