[スポンサーリンク]

一般的な話題

有機化合物で情報を記録する未来は来るか

 

突然ですが皆さんのパソコン歴はどれ位ですか?

正確に思い出せないにしても、最初にどんな記憶装置を使っていたかで大体見当はつきます。

現在では記憶装置ではSSDとか、USBメモリが一般的ですね。少し前ならHDDと3.5インチのフロッピーディスクでしょうか。えっ?フロッピーは5インチでしたか?

他にもMOとかZIPとかJAZZとかもありましたね。まさかとは思いますがカセットテープじゃないでしょうね?

時代によって入手可能な記憶デバイスの容量、取り扱う情報の容量は異なりますが、一つだけ確かな事はその容量は増える一方であるということです。増大する情報量に対して、記憶メディアの進歩は追いつけるのでしょうか?そして化学はどんな答えを見つける必要があるのでしょうか?

記事をお読みの皆様はPCの画面、もしくはスマホの画面をご覧だと思います。PCの記憶デバイスの容量は数100GBから数TB、スマホなら数10GBという単位の記憶容量だと思います。ひと昔前なら信じられないような容量ですが、結構一杯になりますよね。

もう見ることも無くなってきた3.5インチフロッピーディスクの容量はなんと1.4 MBでしたか。音楽ファイル一曲分にもなりません。筆者が最初に買ったのはカセットテープというものにデータを録音して記憶するというものでした。カセットテープの時代はせいぜい必要なデータ容量は数10kB、インターネットの接続回線も初めて引いたのは56kbpsでした。ちなみにケムステの記事1ページの容量は約1.5 MBですので、常時最大速度が出たとしても読み込むのに3分30秒程度はかかる計算です。
polymer_1.jpg

いずれにしてもこれら情報を記憶しておくために用いられているのは無機化合物です。磁気的、もしくは電気的な信号の出し入れによって情報を読み書きしています。しかし無機化合物による情報の記録には難点が幾つかあります。

例えば、磁気的、電気的記録は寿命が短いということや、ディスクやメモリのように化合物をある適切な形状に加工しなければならず、決して小さくない容積を占めることなどです。

寿命が最も長い記録方法は石板だと言われています。古代の情報が現代までしっかり伝わっています。これに習い、後世に残したい情報をガラスに残そうとする試みもあるようです。

容積については記録メディアの集積化によってどんどんダウンサイジングされています。ひと昔前のUSBメモリは数10MBとかでしたが、今は数GBの物が千円以下で買えたりします。ハードディスクドライブも4TBのものが購入可能です。しかし、現代の技術でも1ZB (1015 MB)の情報を記憶するためのHDDの製造には約1000 Kgのコバルト合金が必要です。ちなみに1ZBというのは1日に世界で生み出される情報量とされています。

 

以上のような問題点を解決すべく日夜研究開発が続けられていると思いますが、ふと見ると桁違いに効率の良い情報記録物質があることに気づきます。あなたもたくさん持っている物質です。そう、DNARNAです。これらのバイオポリマーは生命の情報記録に用いられていると考えることができます。DNAであれば理論上数グラムで1ZBの情報を記憶可能です。そう考えると有機化合物、有機高分子化合物は情報の記録メディアとして有望に思えます。

 

実際このようなコンセプトの基、高分子化合物に情報を記憶する試みに関する論文も報告されており[1, 2, 3]、これからますますホットなトピックスになりそうです。

DNAのような分子でなくても、何らかの情報を分子に記憶させる事はできるはずです。分子の構造や立体化学の違いとして記録してもいいでしょう。組み合わせ方も例えばDNAのように三つのコドンを一つの情報にするなどすれば組み合わせ方は無限に作り出せます。

 

polymer_2.jpg図は文献[4]より引用

これらの分子で問題となるのは情報の記録方法と読み込み方法です。これさえクリアーできれば情報記録デバイスとしての有機高分子化合物の可能性はまだまだ残っているように思えます。

有機vs無機のような単純な対立ではなく、今後益々増大する情報量の記録、長い期間保存するべき重要な情報の記録という分野に有機化合物、有機高分子化合物が果たす役割というものがあるように思います。

Advanced tasks such as polymer chain encryption and polymer sequencing are attainable.

情報の記録分子としてDNAのような核酸を使う方法も考案されておりますが、より単純な高分子化合物の配列を制御した合成によって情報の読み、書きを可能とする方法も開発されてきています。そんな中で最近Meierらによって報告された方法を少しだけ紹介しましょう[4]

 

polymer_3.pngPasserini three-component reaction (P-3CR)

彼らはPasserini 3成分連結反応を用いて鎖を伸張していくというアプローチを試みています。ポリマーといっても4回のシーケンスが実現したのみですので、まだまだ大きな分子にまで展開できるかどうかは未知数です(PEGとのコポリマーは合成可能)。また一つの反応容器で完結するわけではなく、チオール-エン反応、Passerini 3成分連結反応を別々に行わなければならないという点も非効率と言えます。まだまだ課題はありますが、こういった手法を参考に何か大きなブレークスルーがあれば有機化合物(高分子化合物)を用いた情報の記録が実現する日も来るのかもしれません。

 

今回のポストはNature Chemistry誌のthesisを参考に送らせていただきました(今月はthesisっぽくなくてmini-reviewみたいな感じでした・・・)。

 

Information-containing macromolecules

Colquhoun, H.; Lutz, J.-F. Nature Chem. 6, 455-456 (2014). Doi: 10.1038/nchem.1958

 

関連文献

1, Lutz, J.-F., Ouchi, M., Liu, D. R., Sawamoto, M. Science 341, (6146). doi: 10.1126/science.1238149

2, Pfeifer, S., Zarafshani, Z., Badi, N., Lutz, J.-F. J. Am. Chem. Soc. 131, 9195-9197 (2009). doi: 10.1021/ja903635y

3, Espeel, P. et al. Angew. Chem. Int. Ed. 52, 1326113264 (2013). doi: 10.1002/anie.201307439

4, Solleder, S. C., Meier, M. A. R. Angew. Chem. Int. Ed. 53, 711714 (2014). doi: 10.1002/anie.201308960

 

関連書籍

The following two tabs change content below.
ペリプラノン

ペリプラノン

有機合成化学が専門。主に天然物化学、ケミカルバイオロジーについて書いていきたいと思います。
ペリプラノン

最新記事 by ペリプラノン (全て見る)

関連記事

  1. ヘリウムガスのはなし
  2. 脱芳香化反応を利用したヒンクデンチンAの不斉全合成
  3. STAP細胞問題から見えた市民と科学者の乖離ー前編
  4. 冬虫夏草由来の画期的新薬がこん平さんを救う?ーFTY720
  5. 機械的刺激による結晶間相転移に基づく発光性メカノクロミズム
  6. アロタケタールの全合成
  7. アルメニア初の化学系国際学会に行ってきた!②
  8. 有機合成化学協会誌10月号:不飽和脂肪酸代謝産物・フタロシアニン…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 研究倫理問題について学んでおこう
  2. 林 雄二郎 Yujiro Hayashi
  3. 長井長義の日記など寄贈 明治の薬学者、徳島大へ
  4. エチオ・リザード Ezio Rizzardo
  5. 電気ウナギに学ぶ:柔らかい電池の開発
  6. 第31回 ナノ材料の階層的組織化で新材料をつくる―Milo Shaffer教授
  7. フラグメント創薬 Fragment-Based Drug Discovery/Design (FBDD)
  8. イスラエルの化学ってどうよ?
  9. アルゼンチン キプロス
  10. 2009年10大化学ニュース

関連商品

注目情報

注目情報

最新記事

分子で作る惑星、その名もナノサターン!

2018年、東工大の豊田真司先生らによって、まるで土星を型どったような分子の合成が報告された。フラー…

磯部 寛之 Hiroyuki Isobe

磯部寛之(いそべひろゆき、1970年11月9日–東京都生まれ)は日本の有機化学者である。東京大学理学…

死海付近で臭素が漏洩

イスラエル警察は死海付近の向上から臭素が漏れだしたことを明らかにし、付近住民に自宅にとどまるよう呼び…

光触媒反応用途の青色LED光源を比較してみた

巷で大流行の可視光レドックス触媒反応ですが、筆者のラボでも活用するようになりました。しかし経…

宮沢賢治の元素図鑑

概要本書は宮沢賢治の作品に登場する元素を取り上げ、作品を入り口として各元素について解説した書…

電子豊富芳香環に対する触媒的芳香族求核置換反応

2017年、ノースカロライナ大学チャペルヒル校・David Nicewiczらは、可視光レドックス触…

Chem-Station Twitter

PAGE TOP