[スポンサーリンク]

化学者のつぶやき

Brevianamide Aの全合成:長年未解明の生合成経路の謎に終止符

[スポンサーリンク]

市販の試薬から短工程でbrevianamide Aの初の全合成が達成された。今後、brevianamide類の生合成経路解明研究の加速が期待できる。

 Brevianamide AとBの生合成経路仮説

Diels–Alder反応は強力な有機合成反応である。この反応はいくつかの天然物の生合成にも関与していることが知られ、生体内でDiels–Alder反応を触媒するDiels–Alderaseもいくつか同定されてきた[1]。モノ-、もしくはジオキソピペラジン骨格をもつビシクロ[2.2.2]ジアザオクタンアルカロイドもそのような天然物の一つであり、生合成においてDiels–Alder反応がこのビシクロ骨格形成に関与すると提唱されている(図1A)[2]。これらの天然物のいくつかは生合成遺伝子クラスターが同定され、Diels–Alderaseの存在が明らかになっている。しかし、brevianamide A (1)やそのジアステレオマー(2: brevianamide B)などのジオキソピペラジン骨格をもつアルカロイドの生合成遺伝子クラスターはまだ同定されていない[3,4]
12は1969年に菌類Penicillium brevicompactumから生成比約90:10で単離された。単離後50年間に多くの研究がなされた結果、現在では1993年にWilliamsらが提唱した以下の生合成経路が支持されている (図1B)[5]。生合成中間体(+)-deoxybrevianamide E (3)がもつインドール部位が酸化されてヒドロキシインドリン4を与える。その後アルキル基の1,2-転位が進行しインドキシル5となる。5のジケトピペラジンの酸化により生じたアザジエン8の分子内Diels–Alder反応により12が生合成される。Williamsらは本生合成仮説を実証すべく本合成経路にて12の合成を試みたが、5の不安定性により失敗した。このようにin vitroでの本生合成の再現が難しく、Diels–Alderaseが不明な12の生合成経路の解明は、長い間多くの化学者の研究対象とされてきた。
今回、エディンバラ大学のLawrenceらは、Williamsらの仮説をもとに、3の代わりに酸化段階が一つ高い(+)-dehydrodeoxybrevianamide E (6)を用いて7を合成し、その後7の分子内Diels–Alder反応により12の全合成を達成した(1は初の全合成: 図1C)。本全合成を通じて、1の生合成にはDiels–Alderaseが関与しないことが示唆された。

図1. A. ビシクロ[2,2,2]ジアザオクタンアルカロイド B. Williamsが提唱した1,2の生合成経路 C. Brevianamide A, Bの合成計画

Total Synthesis of Brevianamide A”
Godfrey, R. C.; Green, N. J.; Nichol, G. S.; Lawrence, A. L. Nat. Chem. 2020.
DOI: 10.1038/s41557-020-0442-3

論文著者の紹介


研究者:Andrew L. Lawrence
研究者の経歴:
2002–2006 M.S., St. John’s College, University of Oxford, UK
2006–2010 Ph.D., University of Oxford, UK (Prof. J. E. Baldwin and Prof. R. M. Adlington)
2010–2011 Postdoc Fellow, Australian National University, Australian (Prof. M. S. Sherburn)
2012–2013 ARC DECRA Fellow, Australian National University, Australian
2013–2017 Lecturer, University of Edinburgh, UK
2017– Senior Lecturer, University of Edinburgh, UK
研究内容:天然物の全合成研究

論文の概要

著者らは、Williams生合成仮説の中間体8がもつジオキソピペラジン部位と同じ酸化段階をもつ(+)-dehydrodeoxybrevianamide E (6)を合成中間体とすれば1を合成できると考えた(図2)。

そこで、市販のL-トリプトファンメチルエステル(9)から5工程、総収率34%で6を合成した。次に6mCPBA酸化したところ、インドール部位の酸化とアミナール形成(環化反応)が一挙に進行し、1011が収率57%、ジアステレオマー生成比64:36で得られた。続いて、10をLiOH/H2O条件で反応させることで、アミナールの開環–アルキル基の1,2-転位–生じたアザジエンの分子内Diels–Alder反応のカスケード反応が進行し、収率63%、ジアステレオマー生成比93:7で12の合成に成功した。11を同様の反応条件に付したところ、収率60%、ジアステレオマー比92:8で12のエナンチオマーent1ent2が得られた。

最後のDiels–Alderカスケード反応のジアステレオ選択性が約9:1と、単離された天然物12の比と同等であったことから、これらの生合成にはDiels–Alderaseは関与せず、自発的に8のDiels–Alder反応が進行していることが示唆された。

図2. Brevianamide Aの全合成

 

以上、brevianamide A (1)と2の全合成が達成された。本成果により、長年未解明であった1および2の生合成経路の謎に終止符が打たれた[4]

 参考文献

  1. Stocking, E. M.; Williams, R. M. Chemistry and Biology of Biosynthetic Diels–Alder Reactions. Angew. Chem., Int. Ed. 2003, 34, 3078–3115. DOI: 10.1002/anie.200200534
  2. Finefield, J. M.; Frisvad, J. C.; Sherman, D. H.; Williams, R. M. Fungal Origins of the Bicyclo[2.2.2]diazaoctane Ring System of Prenylated Indole Alkaloids. J. Nat. Prod. 2012, 75, 812–833. DOI: 10.1021/np200954v
  3. Dan, Q.; Newmister, S. A.; Klas, K. R.; Fraley, A. E.; Mcafoos, T. J.; Somoza, A. D.; Sunderhaus, J. D.; Ye, Y.; Shende, V. V.; Yu, F.; Sanders, J. N.; Brown, W. C.; Zhao, L.; Paton, R. S.; Houk, K. N.; Smith, J. L.; Sherman, D. H.; Williams, R. M. Fungal Indole Alkaloid Biogenesis through Evolution of a Bifunctional Reductase/Diels–Alderase. Nat. Chem. 2019, 11, 972–980. DOI: 10.1038/s41557-019-0326-6
  4. 本論文査読中にWilliams、Sherman、Liらによって1の生合成遺伝子クラスターが同定された。種々の対照実験の結果、Lawrenceらの結論と同様、本Diels–Alder反応にはDiels–Alderaseは関与していないことが提唱された。Ye, Y.; Du, L.; Zhang, X.; Newmister, S. A.; Zhang, W.; Mu, S.; Minami, A.; Mccauley, M.; Alegre-Requena, J. V.; Fraley, A. E.; Adrover-Castellano, M. L.; Carney, N.; Shende, V. V.; Oikawa, H.; Kato, H.; Tsukamoto, S.; Paton, R. S.; Williams, R. M.; Sherman, D. H.; Li, S. Cofactor-Independent Pinacolase Directs Non-Diels–Alderase Biogenesis of the Brevianamides.ChemRxiv Preprint 2019. DOI: 26434/chemrxiv.9122009.v1
  5. Sanz-Cervera, J. F.; Glinka, T.; Williams, R. M. Biosynthesis of Brevianamides A and B: in Search of the Biosynthetic Diels–Alder Construction.Tetrahedron 1993, 49, 8471–8482. DOI: 1016/s0040-4020(01)96255-6

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 「超分子重合によるp-nヘテロ接合の構築」― インド国立学際科学…
  2. 大学の学科がクラウドファンディング!?『化学の力を伝えたい』
  3. 単分子の電気化学反応を追う!EC-TERSとは?
  4. 触媒討論会に行ってきました
  5. 化学工場災害事例 ~爆発事故に学ぶ~
  6. 超分子ポリマーを精密につくる
  7. リンダウ会議に行ってきた②
  8. MOFを用いることでポリアセンの合成に成功!

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 科学カレンダー:学会情報に関するお役立ちサイト
  2. ビンゲル反応 Bingel Reaction
  3. ノーベル賞・田中さん愛大で講義
  4. ピロティ・ロビンソン ピロール合成 Piloty-Robinson Pyrrole Synthesis
  5. ダフ反応 Duff Reaction
  6. 元素のふしぎ展に行ってきました
  7. 新元素、2度目の合成成功―理研が命名権獲得
  8. 論文をグレードアップさせるーMayer Scientific Editing
  9. 徒然なるままにセンター試験を解いてみた(2018年版)
  10. 【エーザイ】新規抗癌剤「エリブリン」をスイスで先行承認申請

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2020年6月
1234567
891011121314
15161718192021
22232425262728
2930  

注目情報

最新記事

光と水で還元的環化反応をリノベーション

第609回のスポットライトリサーチは、北海道大学 大学院薬学研究院(精密合成化学研究室)の中村顕斗 …

ブーゲ-ランベルト-ベールの法則(Bouguer-Lambert-Beer’s law)

概要分子が溶けた溶液に光を通したとき,そこから出てくる光の強さは,入る前の強さと比べて小さくなる…

活性酸素種はどれでしょう? 〜三重項酸素と一重項酸素、そのほか〜

第109回薬剤師国家試験 (2024年実施) にて、以下のような問題が出題されま…

産総研がすごい!〜修士卒研究職の新育成制度を開始〜

2023年より全研究領域で修士卒研究職の採用を開始した産業技術総合研究所(以下 産総研)ですが、20…

有機合成化学協会誌2024年4月号:ミロガバリン・クロロププケアナニン・メロテルペノイド・サリチル酸誘導体・光励起ホウ素アート錯体

有機合成化学協会が発行する有機合成化学協会誌、2024年4月号がオンライン公開されています。…

日本薬学会第144年会 (横浜) に参加してきました

3月28日から31日にかけて開催された,日本薬学会第144年会 (横浜) に参加してきました.筆者自…

キシリトールのはなし

Tshozoです。 35年くらい前、ある食品メーカが「虫歯になりにくい糖分」を使ったお菓子を…

2つの結合回転を熱と光によって操る、ベンズアミド構造の新たな性質を発見

 第 608回のスポットライトリサーチは、北海道大学大学院 生命科学院 生命科学専攻 生命医…

スポットライトリサーチ まとめ【初回〜第200回まで】

ケムステの人気企画スポットライトリサーチ、2015 年に始まって以来、2024 年現…

【産総研・触媒化学融合研究センター】新卒・既卒採用情報

触媒センターでは、「個の力」でもある触媒化学を基盤としつつも、異分野に積極的に関…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP