[スポンサーリンク]

化学者のつぶやき

Brevianamide Aの全合成:長年未解明の生合成経路の謎に終止符

[スポンサーリンク]

市販の試薬から短工程でbrevianamide Aの初の全合成が達成された。今後、brevianamide類の生合成経路解明研究の加速が期待できる。

 Brevianamide AとBの生合成経路仮説

Diels–Alder反応は強力な有機合成反応である。この反応はいくつかの天然物の生合成にも関与していることが知られ、生体内でDiels–Alder反応を触媒するDiels–Alderaseもいくつか同定されてきた[1]。モノ-、もしくはジオキソピペラジン骨格をもつビシクロ[2.2.2]ジアザオクタンアルカロイドもそのような天然物の一つであり、生合成においてDiels–Alder反応がこのビシクロ骨格形成に関与すると提唱されている(図1A)[2]。これらの天然物のいくつかは生合成遺伝子クラスターが同定され、Diels–Alderaseの存在が明らかになっている。しかし、brevianamide A (1)やそのジアステレオマー(2: brevianamide B)などのジオキソピペラジン骨格をもつアルカロイドの生合成遺伝子クラスターはまだ同定されていない[3,4]
12は1969年に菌類Penicillium brevicompactumから生成比約90:10で単離された。単離後50年間に多くの研究がなされた結果、現在では1993年にWilliamsらが提唱した以下の生合成経路が支持されている (図1B)[5]。生合成中間体(+)-deoxybrevianamide E (3)がもつインドール部位が酸化されてヒドロキシインドリン4を与える。その後アルキル基の1,2-転位が進行しインドキシル5となる。5のジケトピペラジンの酸化により生じたアザジエン8の分子内Diels–Alder反応により12が生合成される。Williamsらは本生合成仮説を実証すべく本合成経路にて12の合成を試みたが、5の不安定性により失敗した。このようにin vitroでの本生合成の再現が難しく、Diels–Alderaseが不明な12の生合成経路の解明は、長い間多くの化学者の研究対象とされてきた。
今回、エディンバラ大学のLawrenceらは、Williamsらの仮説をもとに、3の代わりに酸化段階が一つ高い(+)-dehydrodeoxybrevianamide E (6)を用いて7を合成し、その後7の分子内Diels–Alder反応により12の全合成を達成した(1は初の全合成: 図1C)。本全合成を通じて、1の生合成にはDiels–Alderaseが関与しないことが示唆された。

図1. A. ビシクロ[2,2,2]ジアザオクタンアルカロイド B. Williamsが提唱した1,2の生合成経路 C. Brevianamide A, Bの合成計画

Total Synthesis of Brevianamide A”
Godfrey, R. C.; Green, N. J.; Nichol, G. S.; Lawrence, A. L. Nat. Chem. 2020.
DOI: 10.1038/s41557-020-0442-3

論文著者の紹介


研究者:Andrew L. Lawrence
研究者の経歴:
2002–2006 M.S., St. John’s College, University of Oxford, UK
2006–2010 Ph.D., University of Oxford, UK (Prof. J. E. Baldwin and Prof. R. M. Adlington)
2010–2011 Postdoc Fellow, Australian National University, Australian (Prof. M. S. Sherburn)
2012–2013 ARC DECRA Fellow, Australian National University, Australian
2013–2017 Lecturer, University of Edinburgh, UK
2017– Senior Lecturer, University of Edinburgh, UK
研究内容:天然物の全合成研究

論文の概要

著者らは、Williams生合成仮説の中間体8がもつジオキソピペラジン部位と同じ酸化段階をもつ(+)-dehydrodeoxybrevianamide E (6)を合成中間体とすれば1を合成できると考えた(図2)。

そこで、市販のL-トリプトファンメチルエステル(9)から5工程、総収率34%で6を合成した。次に6mCPBA酸化したところ、インドール部位の酸化とアミナール形成(環化反応)が一挙に進行し、1011が収率57%、ジアステレオマー生成比64:36で得られた。続いて、10をLiOH/H2O条件で反応させることで、アミナールの開環–アルキル基の1,2-転位–生じたアザジエンの分子内Diels–Alder反応のカスケード反応が進行し、収率63%、ジアステレオマー生成比93:7で12の合成に成功した。11を同様の反応条件に付したところ、収率60%、ジアステレオマー比92:8で12のエナンチオマーent1ent2が得られた。

最後のDiels–Alderカスケード反応のジアステレオ選択性が約9:1と、単離された天然物12の比と同等であったことから、これらの生合成にはDiels–Alderaseは関与せず、自発的に8のDiels–Alder反応が進行していることが示唆された。

図2. Brevianamide Aの全合成

 

以上、brevianamide A (1)と2の全合成が達成された。本成果により、長年未解明であった1および2の生合成経路の謎に終止符が打たれた[4]

 参考文献

  1. Stocking, E. M.; Williams, R. M. Chemistry and Biology of Biosynthetic Diels–Alder Reactions. Angew. Chem., Int. Ed. 2003, 34, 3078–3115. DOI: 10.1002/anie.200200534
  2. Finefield, J. M.; Frisvad, J. C.; Sherman, D. H.; Williams, R. M. Fungal Origins of the Bicyclo[2.2.2]diazaoctane Ring System of Prenylated Indole Alkaloids. J. Nat. Prod. 2012, 75, 812–833. DOI: 10.1021/np200954v
  3. Dan, Q.; Newmister, S. A.; Klas, K. R.; Fraley, A. E.; Mcafoos, T. J.; Somoza, A. D.; Sunderhaus, J. D.; Ye, Y.; Shende, V. V.; Yu, F.; Sanders, J. N.; Brown, W. C.; Zhao, L.; Paton, R. S.; Houk, K. N.; Smith, J. L.; Sherman, D. H.; Williams, R. M. Fungal Indole Alkaloid Biogenesis through Evolution of a Bifunctional Reductase/Diels–Alderase. Nat. Chem. 2019, 11, 972–980. DOI: 10.1038/s41557-019-0326-6
  4. 本論文査読中にWilliams、Sherman、Liらによって1の生合成遺伝子クラスターが同定された。種々の対照実験の結果、Lawrenceらの結論と同様、本Diels–Alder反応にはDiels–Alderaseは関与していないことが提唱された。Ye, Y.; Du, L.; Zhang, X.; Newmister, S. A.; Zhang, W.; Mu, S.; Minami, A.; Mccauley, M.; Alegre-Requena, J. V.; Fraley, A. E.; Adrover-Castellano, M. L.; Carney, N.; Shende, V. V.; Oikawa, H.; Kato, H.; Tsukamoto, S.; Paton, R. S.; Williams, R. M.; Sherman, D. H.; Li, S. Cofactor-Independent Pinacolase Directs Non-Diels–Alderase Biogenesis of the Brevianamides.ChemRxiv Preprint 2019. DOI: 26434/chemrxiv.9122009.v1
  5. Sanz-Cervera, J. F.; Glinka, T.; Williams, R. M. Biosynthesis of Brevianamides A and B: in Search of the Biosynthetic Diels–Alder Construction.Tetrahedron 1993, 49, 8471–8482. DOI: 1016/s0040-4020(01)96255-6

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 宇宙なう:結晶生成サービス「Kirara」を利用してみた
  2. e.e., or not e.e.:
  3. 実験の再現性でお困りではありませんか?
  4. クリック反応を用いて、機能性分子を持つイナミド類を自在合成!
  5. 期待度⭘!サンドイッチ化合物の新顔「シクロセン」
  6. 地方の光る化学商社~長瀬産業殿~
  7. フラスコ内でタンパクが連続的に進化する
  8. メソポーラスシリカ(1)

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 理化学機器のリユースマーケット「ZAI」
  2. 正岡 重行 Masaoka Shigeyuki
  3. 室温でアルカンから水素を放出させる紫外光ハイブリッド触媒系
  4. 並行人工膜透過性試験 parallel artificial membrane permeability assay
  5. ケムステ版・ノーベル化学賞候補者リスト【2016年版】
  6. ノバルティス、後発薬品世界最大手に・米独社を買収
  7. 究極の黒を炭素材料で作る
  8. マイケル・レヴィット Michael Levitt
  9. Dihydropyridazinone環構造を有する初の天然物 Actinopyridazinoneを発見 ~微生物の持つヒドラジン生合成経路の多様性を解明~
  10. ノーベル化学賞:下村脩・米ボストン大名誉教授ら3博士に

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2020年6月
1234567
891011121314
15161718192021
22232425262728
2930  

注目情報

最新記事

5/15(水)Zoom開催 【旭化成 人事担当者が語る!】2026年卒 化学系学生向け就活スタート講座

化学系の就職活動を支援する『化学系学生のための就活』からのご案内です。化学業界・研究職でのキャリ…

フローマイクロリアクターを活用した多置換アルケンの効率的な合成

第610回のスポットライトリサーチは、京都大学大学院理学研究科(依光研究室)に在籍されていた江 迤源…

マリンス有機化学(上)-学び手の視点から-

概要親しみやすい会話形式を用いた現代的な教育スタイルで有機化学の重要概念を学べる標準教科書.…

【大正製薬】キャリア採用情報(正社員)

<求める人物像>・自ら考えて行動できる・高い専門性を身につけている・…

国内初のナノボディ®製剤オゾラリズマブ

ナノゾラ®皮下注30mgシリンジ(一般名:オゾラリズマブ(遺伝子組換え))は、A…

大正製薬ってどんな会社?

大正製薬は病気の予防から治療まで、皆さまの健康に寄り添う事業を展開しています。こ…

一致団結ケトンでアレン合成!1,3-エンインのヒドロアルキル化

ケトンと1,3-エンインのヒドロアルキル化反応が開発された。独自の配位子とパラジウム/ホウ素/アミン…

ベテラン研究者 vs マテリアルズ・インフォマティクス!?~ 研究者としてMIとの正しい向き合い方

開催日 2024/04/24 : 申込みはこちら■開催概要近年、少子高齢化、働き手の不足…

第11回 慶應有機化学若手シンポジウム

シンポジウム概要主催:慶應有機化学若手シンポジウム実行委員会共催:慶應義塾大…

薬学部ってどんなところ?

自己紹介Chemstationの新入りスタッフのねこたまと申します。現在は学部の4年生(薬学部)…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP