[スポンサーリンク]

化学者のつぶやき

Brevianamide Aの全合成:長年未解明の生合成経路の謎に終止符

[スポンサーリンク]

市販の試薬から短工程でbrevianamide Aの初の全合成が達成された。今後、brevianamide類の生合成経路解明研究の加速が期待できる。

 Brevianamide AとBの生合成経路仮説

Diels–Alder反応は強力な有機合成反応である。この反応はいくつかの天然物の生合成にも関与していることが知られ、生体内でDiels–Alder反応を触媒するDiels–Alderaseもいくつか同定されてきた[1]。モノ-、もしくはジオキソピペラジン骨格をもつビシクロ[2.2.2]ジアザオクタンアルカロイドもそのような天然物の一つであり、生合成においてDiels–Alder反応がこのビシクロ骨格形成に関与すると提唱されている(図1A)[2]。これらの天然物のいくつかは生合成遺伝子クラスターが同定され、Diels–Alderaseの存在が明らかになっている。しかし、brevianamide A (1)やそのジアステレオマー(2: brevianamide B)などのジオキソピペラジン骨格をもつアルカロイドの生合成遺伝子クラスターはまだ同定されていない[3,4]
12は1969年に菌類Penicillium brevicompactumから生成比約90:10で単離された。単離後50年間に多くの研究がなされた結果、現在では1993年にWilliamsらが提唱した以下の生合成経路が支持されている (図1B)[5]。生合成中間体(+)-deoxybrevianamide E (3)がもつインドール部位が酸化されてヒドロキシインドリン4を与える。その後アルキル基の1,2-転位が進行しインドキシル5となる。5のジケトピペラジンの酸化により生じたアザジエン8の分子内Diels–Alder反応により12が生合成される。Williamsらは本生合成仮説を実証すべく本合成経路にて12の合成を試みたが、5の不安定性により失敗した。このようにin vitroでの本生合成の再現が難しく、Diels–Alderaseが不明な12の生合成経路の解明は、長い間多くの化学者の研究対象とされてきた。
今回、エディンバラ大学のLawrenceらは、Williamsらの仮説をもとに、3の代わりに酸化段階が一つ高い(+)-dehydrodeoxybrevianamide E (6)を用いて7を合成し、その後7の分子内Diels–Alder反応により12の全合成を達成した(1は初の全合成: 図1C)。本全合成を通じて、1の生合成にはDiels–Alderaseが関与しないことが示唆された。

図1. A. ビシクロ[2,2,2]ジアザオクタンアルカロイド B. Williamsが提唱した1,2の生合成経路 C. Brevianamide A, Bの合成計画

Total Synthesis of Brevianamide A”
Godfrey, R. C.; Green, N. J.; Nichol, G. S.; Lawrence, A. L. Nat. Chem. 2020.
DOI: 10.1038/s41557-020-0442-3

論文著者の紹介


研究者:Andrew L. Lawrence
研究者の経歴:
2002–2006 M.S., St. John’s College, University of Oxford, UK
2006–2010 Ph.D., University of Oxford, UK (Prof. J. E. Baldwin and Prof. R. M. Adlington)
2010–2011 Postdoc Fellow, Australian National University, Australian (Prof. M. S. Sherburn)
2012–2013 ARC DECRA Fellow, Australian National University, Australian
2013–2017 Lecturer, University of Edinburgh, UK
2017– Senior Lecturer, University of Edinburgh, UK
研究内容:天然物の全合成研究

論文の概要

著者らは、Williams生合成仮説の中間体8がもつジオキソピペラジン部位と同じ酸化段階をもつ(+)-dehydrodeoxybrevianamide E (6)を合成中間体とすれば1を合成できると考えた(図2)。

そこで、市販のL-トリプトファンメチルエステル(9)から5工程、総収率34%で6を合成した。次に6mCPBA酸化したところ、インドール部位の酸化とアミナール形成(環化反応)が一挙に進行し、1011が収率57%、ジアステレオマー生成比64:36で得られた。続いて、10をLiOH/H2O条件で反応させることで、アミナールの開環–アルキル基の1,2-転位–生じたアザジエンの分子内Diels–Alder反応のカスケード反応が進行し、収率63%、ジアステレオマー生成比93:7で12の合成に成功した。11を同様の反応条件に付したところ、収率60%、ジアステレオマー比92:8で12のエナンチオマーent1ent2が得られた。

最後のDiels–Alderカスケード反応のジアステレオ選択性が約9:1と、単離された天然物12の比と同等であったことから、これらの生合成にはDiels–Alderaseは関与せず、自発的に8のDiels–Alder反応が進行していることが示唆された。

図2. Brevianamide Aの全合成

 

以上、brevianamide A (1)と2の全合成が達成された。本成果により、長年未解明であった1および2の生合成経路の謎に終止符が打たれた[4]

 参考文献

  1. Stocking, E. M.; Williams, R. M. Chemistry and Biology of Biosynthetic Diels–Alder Reactions. Angew. Chem., Int. Ed. 2003, 34, 3078–3115. DOI: 10.1002/anie.200200534
  2. Finefield, J. M.; Frisvad, J. C.; Sherman, D. H.; Williams, R. M. Fungal Origins of the Bicyclo[2.2.2]diazaoctane Ring System of Prenylated Indole Alkaloids. J. Nat. Prod. 2012, 75, 812–833. DOI: 10.1021/np200954v
  3. Dan, Q.; Newmister, S. A.; Klas, K. R.; Fraley, A. E.; Mcafoos, T. J.; Somoza, A. D.; Sunderhaus, J. D.; Ye, Y.; Shende, V. V.; Yu, F.; Sanders, J. N.; Brown, W. C.; Zhao, L.; Paton, R. S.; Houk, K. N.; Smith, J. L.; Sherman, D. H.; Williams, R. M. Fungal Indole Alkaloid Biogenesis through Evolution of a Bifunctional Reductase/Diels–Alderase. Nat. Chem. 2019, 11, 972–980. DOI: 10.1038/s41557-019-0326-6
  4. 本論文査読中にWilliams、Sherman、Liらによって1の生合成遺伝子クラスターが同定された。種々の対照実験の結果、Lawrenceらの結論と同様、本Diels–Alder反応にはDiels–Alderaseは関与していないことが提唱された。Ye, Y.; Du, L.; Zhang, X.; Newmister, S. A.; Zhang, W.; Mu, S.; Minami, A.; Mccauley, M.; Alegre-Requena, J. V.; Fraley, A. E.; Adrover-Castellano, M. L.; Carney, N.; Shende, V. V.; Oikawa, H.; Kato, H.; Tsukamoto, S.; Paton, R. S.; Williams, R. M.; Sherman, D. H.; Li, S. Cofactor-Independent Pinacolase Directs Non-Diels–Alderase Biogenesis of the Brevianamides.ChemRxiv Preprint 2019. DOI: 26434/chemrxiv.9122009.v1
  5. Sanz-Cervera, J. F.; Glinka, T.; Williams, R. M. Biosynthesis of Brevianamides A and B: in Search of the Biosynthetic Diels–Alder Construction.Tetrahedron 1993, 49, 8471–8482. DOI: 1016/s0040-4020(01)96255-6
山口 研究室

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 2020年の人気記事執筆者からのコメント全文を紹介
  2. 新しい構造を持つゼオライトの合成に成功!
  3. 【第11回Vシンポ特別企画】講師紹介①:東原 知哉 先生
  4. 液相における粒子間水素移動によって加速されるアルカンとベンゼンの…
  5. 【速報】2017年のノーベル生理学・医学賞は「概日リズムを制御す…
  6. パラジウム触媒の力で二酸化炭素を固定する
  7. 普通じゃ満足できない元素マニアのあなたに:元素手帳2016
  8. 励起状態複合体でキラルシクロプロパンを合成する

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. フレデリック・キッピング Frederic Stanley Kipping
  2. N-ヘテロ環状カルベン / N-Heterocyclic Carbene (NHC)
  3. 映画「分子の音色」A scientist and a musician
  4. 【太陽HD】新卒採用情報(20年卒)
  5. ビス(トリシクロヘキシルホスフィン)ニッケル(II)ジクロリド : Bis(tricyclohexylphosphine)nickel(II) Dichloride
  6. マット・シェア Matthew D. Shair
  7. エチルマレイミド (N-ethylmaleimide)
  8. MFCA -環境調和の指標、負のコストの見える化-
  9. 「生合成に基づいた網羅的な天然物全合成」—カリフォルニア大学バークレー校・Sarpong研より
  10. エッシェンモーザーメチレン化 Eschenmoser Methylenation

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2020年6月
« 5月   7月 »
1234567
891011121314
15161718192021
22232425262728
2930  

注目情報

注目情報

最新記事

有機合成化学協会誌2022年1月号:無保護ケチミン・高周期典型金属・フラビン触媒・機能性ペプチド・人工核酸・脂質様材料

有機合成化学協会が発行する有機合成化学協会誌、2022年1月号がオンライン公開されました。本…

第167回―「バイオ原料の活用を目指した重合法の開発」John Spevacek博士

第167回の海外化学者インタビューは、ジョン・スペヴァセック博士です。Aspen Research社…

繊維強化プラスチックの耐衝撃性を凌ぐゴム材料を開発

名古屋大学大学院工学研究科有機・高分子化学専攻の 野呂 篤史講師らの研究グループは、日本ゼオンと共同…

反応化学の活躍できる場を広げたい!【ケムステ×Hey!Labo 糖化学ノックインインタビュー②】

2021年度科学研究費助成事業 学術変革領域研究(B)に採択された『糖鎖ケミカルノックインが拓く膜動…

UiO-66: 堅牢なジルコニウムクラスターの面心立方格子

UiO-66 は六核ジルコニウムオキシクラスターを SBU に持ち、高い熱安定性 · 化学安定性を示…

危ない試薬・面倒な試薬の便利な代替品

実験室レベルでは、未だに危険な試薬を扱わざるを得ない場合も多いかと思います。tert…

赤外線の化学利用:近赤外からテラヘルツまで

(さらに…)…

【誤解してない?】4s軌道はいつも3d軌道より低いわけではない

3d 遷移金属は、多くが (3d)n(4s)2 という中途半端に 3d 軌道が埋まったまま 4s 軌…

第六回ケムステVプレミアレクチャー「有機イオン対の分子設計に基づく触媒機能の創出」

新型コロナ感染者数が爆増し、春の学会がまたほとんどオンラインになりました。残念で…

生体医用イメージングを志向した第二近赤外光(NIR-II)色素:③その他の材料

バイオイメージングにおけるの先端領域の一つである「第二近赤外光(NIR-II)色素」についての総説を…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP