[スポンサーリンク]

化学者のつぶやき

ナイトレン

[スポンサーリンク]

原子構造における基礎中の基礎、価電子は、分子設計時の鍵。分子内の結合や分子全体の構造、化学的性質を決定づけるため、いかにうまく使うかで、可能性は広がります。

窒素原子には五つの価電子があります。
通常、そのうちの二つで孤立電子対をひとつ形成し、残りの三つを他の原子との結合に利用することで、安定な窒素化合物が形成されます。

一方、不安定窒素化合物の中に、ナイトレンという化学種があります。
ナイトレンは、二つの孤立電子対と形式上空のp軌道を有し、たった一つだけ置換基を持つことができます。

rk121812-1.gif

細かい話は省きますが、孤立電子対と空の軌道を持つまるでカルベンのような化学種、ナイトレン。
それ自体、安定な化合物として単離された例はなく、反応中間体としての発生や、遷移金属錯体としての合成が報告されているのみでした[1]。
どーしても獲れない不安定である理由は、(A)二つの孤立電子対間の電荷反発と、(B)一つしか置換基を持てないことによる電子的&立体的な安定化効果の欠如が主な要因。

さて、先日、ついに単離可能なナイトレン化合物の合成に成功したという論文がScience誌に報告されていたので紹介したいと思います。

Fabian Dielmann, Olivier Back, Martin Henry-Ellinger, Paul Jerabek, Gernot Frenking, Guy Bertrand Science 337, 1526 (2012), DOI: 10.1126/science.1226022.

カリフォルニア大学、Guy BERTRANDらグループ[2]は、二つのイミダゾリディン-2-イミナート(NHC=N-)基を持つリンアジド 2を合成し、
これに光(254nm)を照射して脱窒素(N2)化することによって、ナイトレン 3を合成しています。得られたナイトレン淡黄色粉末の収率はなんと92%!

 

rk121812-2.gif

xray nitrene.jpg

                       (図は論文より引用)

以下、少し細かい点を挙げます
——————————————————————————————————————————-
(1) リン周りは平面でP-N1原子間に多重結合性があり、理論計算による結合次数は2.09。

(2) 上述のリン孤立電子対によるナイトレン窒素の安定化は、窒素ではうまくいきません[3-1]。
また二窒素リン置換基((R2N)2P-)であればいいというものではなく(二量化の例[3-2])、イミダゾリディン-2-イミナート(NHC=N-)基を用いることで電子供与性を高めた結果、強力な電子的安定化効果が得られています。即ち、リン上の孤立電子対が窒素7の空のp軌道へと流れ込み、安定化している状態(*注:ただしπ電子は窒素側に偏っている)で適切なルイス構造の一つは以下の通り。。

lewis.jpg

 

 

(3) また、ナイトレン窒素上の孤立電子対はリン-窒素σ*軌道へ相互作用することで安定化されている。

(4) 31P NMRでは7.7ppm、15N NMRでは266ppmにそれぞれシグナルが観測されている(前駆体2ではそれぞれ(31P)111.0ppmと(15N)95.8ppm)。
リン及び窒素周りの電子状態と混成の変化を支持している。

(5)ポリホスファゼンの単量体、もしくは過去の記事同様、二つのNHCで安定化されたPN3ユニットと見なすこともできる。

——————————————————————————————————————————-
おおまかな特徴はこんな感じでしょうか。

また、通常このような化学種が得られれば、すぐに配位子としての利用!~新しい触媒の開発!~等が取り上げられますが、本論文中では、3が遷移金属で安定化されたメタロナイトレン錯体とは異なる反応性を示すことをまず明らかにしています(こーゆー違いをきっちり見つけるのはとても重要!)。

3とイソシアニドの反応では4を与え、さらにiPrOTfとの反応で2の原料である1を再生できることが解っています。

reaction.jpg

つまり、論文タイトルにもある通り、ナイトレンの窒素を用いて新規窒素化合物を作り出せる、窒素原子トランスファー試薬として利用できることを実証しています。窒素源と反応系をうまく選択すれば、触媒的に回すことも可能かもしれません。

安定なカルベン [4]、シクロプロペニリデン [5]、アブノーマルカルベン [6]、ボリレン-カルベン付加体の合成 [7]に続く今回の安定ナイトレンの単離(All science!)。
次は~eneを創り出すのか楽しみですね。

多くの応用化学の背景には基礎化学があり、その基礎研究における化合物合成過程では様々な反応活性種が鍵となる役割を果たしています。もし、このような活性種を自在に扱えるようになれば、基礎・応用双方の飛躍的発展につながることでしょう。
今回の安定ナイトレン一号も、そのような可能性を示してると感じます。
流行り廃りもある中で、基礎はブレないですね。

引用文献

  1.  G. Dequirez, V.-r. Pons, P. Dauban. ACIE. 2012, 51, 7384, DOI: 10.1002/anie.201201945
  2. G. Bertrand Group lab
  3. (1) P. G. Schultz, P. B. Deran, J. Am. Chem. SOC. 1982, 104, 6660. (2) S. Burck, D. Gudat, M. Nieger, C. A. Schalleyd, T. Weilandte, Dalton Trans., 2008, 3478, DOI: 10.1039/b717219b
    [4-7] see Link

関連書籍

[amazonjs asin=”047039059X” locale=”JP” title=”Nitrenes and Nitrenium Ions (Wiley Series of Reactive Intermediates in Chemistry and Biology)”]

関連記事

  1. DNAが絡まないためのループ
  2. アスピリンから多様な循環型プラスチックを合成
  3. バイオ触媒によるトリフルオロメチルシクロプロパンの不斉合成
  4. 13族元素含有ベンゼンの合成と性質の解明
  5. 工業製品コストはどのように決まる?
  6. 【マイクロ波化学(株) 石油化学/プラスチック業界向けウェビナー…
  7. 【書籍】機器分析ハンドブック2 高分子・分離分析編
  8. 日本農芸化学会創立100周年記念展に行ってみた

注目情報

ピックアップ記事

  1. 高橋 大介 Daisuke Takahashi
  2. 植物毒素の全合成と細胞死におけるオルガネラの現象発見
  3. Spin-component-scaled second-order Møller–Plesset perturbation theory (SCS-MP2)
  4. オゾンと光だけでアジピン酸をつくる
  5. とにかく見やすい!論文チェックアプリの新定番『Researcher』
  6. ジェフリー·ロング Jeffrey R. Long
  7. 多成分連結反応 Multicomponent Reaction (MCR)
  8. 危ない試薬・面倒な試薬の便利な代替品
  9. 山本 隆文 YAMAMOTO Takafumi
  10. なぜ青色LEDがノーベル賞なのか?ー性能向上・量産化編

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2012年12月
 12
3456789
10111213141516
17181920212223
24252627282930
31  

注目情報

最新記事

有馬温泉で鉄イオン水溶液について学んできた【化学者が行く温泉巡りの旅】

有馬温泉の金泉は、塩化物濃度と鉄濃度が日本の温泉の中で最も高い温泉で、黄褐色を呈する温泉です。この記…

HPLCをPATツールに変換!オンラインHPLCシステム:DirectInject-LC

これまでの自動サンプリング技術多くの製薬・化学メーカーはその生産性向上のため、有…

MEDCHEM NEWS 34-4 号「新しいモダリティとして注目を浴びる分解創薬」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

圧力に依存して還元反応が進行!~シクロファン構造を活用した新機能~

第686回のスポットライトリサーチは、北海道大学大学院理学研究院化学部門 有機化学第一研究室(鈴木孝…

第58回Vシンポ「天然物フィロソフィ2」を開催します!

第58回ケムステVシンポジウムの開催告知をさせて頂きます!今回のVシンポは、コロナ蔓延の年202…

第76回「目指すは生涯現役!ロマンを追い求めて」櫛田 創 助教

第76回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第75回「デジタル技術は化学研究を革新できるのか?」熊田佳菜子 主任研究員

第75回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第74回「理想的な医薬品原薬の製造法を目指して」細谷 昌弘 サブグループ長

第74回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第57回ケムステVシンポ「祝ノーベル化学賞!金属有機構造体–MOF」を開催します!

第57回ケムステVシンポは、北川 進 先生らの2025年ノーベル化学賞受賞を記念して…

櫛田 創 Soh Kushida

櫛田 創(くしだそう)は日本の化学者である。筑波大学 数理物質系 物質工学域・助教。専門は物理化学、…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP