[スポンサーリンク]

化学者のつぶやき

ナイトレン

[スポンサーリンク]

原子構造における基礎中の基礎、価電子は、分子設計時の鍵。分子内の結合や分子全体の構造、化学的性質を決定づけるため、いかにうまく使うかで、可能性は広がります。

窒素原子には五つの価電子があります。
通常、そのうちの二つで孤立電子対をひとつ形成し、残りの三つを他の原子との結合に利用することで、安定な窒素化合物が形成されます。

一方、不安定窒素化合物の中に、ナイトレンという化学種があります。
ナイトレンは、二つの孤立電子対と形式上空のp軌道を有し、たった一つだけ置換基を持つことができます。

rk121812-1.gif

細かい話は省きますが、孤立電子対と空の軌道を持つまるでカルベンのような化学種、ナイトレン。
それ自体、安定な化合物として単離された例はなく、反応中間体としての発生や、遷移金属錯体としての合成が報告されているのみでした[1]。
どーしても獲れない不安定である理由は、(A)二つの孤立電子対間の電荷反発と、(B)一つしか置換基を持てないことによる電子的&立体的な安定化効果の欠如が主な要因。

さて、先日、ついに単離可能なナイトレン化合物の合成に成功したという論文がScience誌に報告されていたので紹介したいと思います。

Fabian Dielmann, Olivier Back, Martin Henry-Ellinger, Paul Jerabek, Gernot Frenking, Guy Bertrand Science 337, 1526 (2012), DOI: 10.1126/science.1226022.

カリフォルニア大学、Guy BERTRANDらグループ[2]は、二つのイミダゾリディン-2-イミナート(NHC=N-)基を持つリンアジド 2を合成し、
これに光(254nm)を照射して脱窒素(N2)化することによって、ナイトレン 3を合成しています。得られたナイトレン淡黄色粉末の収率はなんと92%!

 

rk121812-2.gif

xray nitrene.jpg

                       (図は論文より引用)

以下、少し細かい点を挙げます
——————————————————————————————————————————-
(1) リン周りは平面でP-N1原子間に多重結合性があり、理論計算による結合次数は2.09。

(2) 上述のリン孤立電子対によるナイトレン窒素の安定化は、窒素ではうまくいきません[3-1]。
また二窒素リン置換基((R2N)2P-)であればいいというものではなく(二量化の例[3-2])、イミダゾリディン-2-イミナート(NHC=N-)基を用いることで電子供与性を高めた結果、強力な電子的安定化効果が得られています。即ち、リン上の孤立電子対が窒素7の空のp軌道へと流れ込み、安定化している状態(*注:ただしπ電子は窒素側に偏っている)で適切なルイス構造の一つは以下の通り。。

lewis.jpg

 

 

(3) また、ナイトレン窒素上の孤立電子対はリン-窒素σ*軌道へ相互作用することで安定化されている。

(4) 31P NMRでは7.7ppm、15N NMRでは266ppmにそれぞれシグナルが観測されている(前駆体2ではそれぞれ(31P)111.0ppmと(15N)95.8ppm)。
リン及び窒素周りの電子状態と混成の変化を支持している。

(5)ポリホスファゼンの単量体、もしくは過去の記事同様、二つのNHCで安定化されたPN3ユニットと見なすこともできる。

——————————————————————————————————————————-
おおまかな特徴はこんな感じでしょうか。

また、通常このような化学種が得られれば、すぐに配位子としての利用!~新しい触媒の開発!~等が取り上げられますが、本論文中では、3が遷移金属で安定化されたメタロナイトレン錯体とは異なる反応性を示すことをまず明らかにしています(こーゆー違いをきっちり見つけるのはとても重要!)。

3とイソシアニドの反応では4を与え、さらにiPrOTfとの反応で2の原料である1を再生できることが解っています。

reaction.jpg

つまり、論文タイトルにもある通り、ナイトレンの窒素を用いて新規窒素化合物を作り出せる、窒素原子トランスファー試薬として利用できることを実証しています。窒素源と反応系をうまく選択すれば、触媒的に回すことも可能かもしれません。

安定なカルベン [4]、シクロプロペニリデン [5]、アブノーマルカルベン [6]、ボリレン-カルベン付加体の合成 [7]に続く今回の安定ナイトレンの単離(All science!)。
次は~eneを創り出すのか楽しみですね。

多くの応用化学の背景には基礎化学があり、その基礎研究における化合物合成過程では様々な反応活性種が鍵となる役割を果たしています。もし、このような活性種を自在に扱えるようになれば、基礎・応用双方の飛躍的発展につながることでしょう。
今回の安定ナイトレン一号も、そのような可能性を示してると感じます。
流行り廃りもある中で、基礎はブレないですね。

引用文献

  1.  G. Dequirez, V.-r. Pons, P. Dauban. ACIE. 2012, 51, 7384, DOI: 10.1002/anie.201201945
  2. G. Bertrand Group lab
  3. (1) P. G. Schultz, P. B. Deran, J. Am. Chem. SOC. 1982, 104, 6660. (2) S. Burck, D. Gudat, M. Nieger, C. A. Schalleyd, T. Weilandte, Dalton Trans., 2008, 3478, DOI: 10.1039/b717219b
    [4-7] see Link

関連書籍

関連記事

  1. 分子の聖杯カリックスアレーンが生命へとつながる
  2. 東北地方太平洋沖地震に募金してみませんか。
  3. 有機合成化学協会誌2019年5月号:特集号 ラジカル種の利用最前…
  4. 英会話とプログラミングの話
  5. シリルエノールエーテルのβ位を選択的に官能基化する
  6. 化学系必見!博物館特集 野辺山天文台編~HC11Nってどんな分子…
  7. ~祭りの後に~ アゴラ企画:有機合成化学カードゲーム【遊機王】
  8. フルオロホルムを用いた安価なトリフルオロメチル化反応の開発

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. SPring-8って何?(初級編)
  2. 二酸化炭素をメタノールに変換する有機分子触媒
  3. ジスルフィド架橋型タンパク質修飾法 Disulfide-Bridging Protein Modification
  4. 本当の天然物はどれ?
  5. アリルC(Sp3)-H結合の直接的ヘテロアリール化
  6. 砂糖から透明樹脂、大阪府立大などが開発に成功
  7. 杏林製薬、ノバルティス社と免疫抑制剤「KRP-203」に関するライセンス契約を締結
  8. コーリー・ウィンターオレフィン合成 Corey-Winter Olefin Synthesis
  9. 第55回―「イオン性液体と化学反応」Tom Welton教授
  10. 稲垣伸二 Shinji Inagaki

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

定番フィルム「ベルビア100」が米国で販売中止。含まれている化学薬品が有害指定に

富士フイルムのリバーサルフィルム「フジクローム ベルビア100」が、米国で販売ストップとなりました。…

話題のAlphaFold2を使ってみた

ここ数日、構造生物学界隈で「AlphaFold2」と呼ばれているタンパク質の構造…

フェリックス・カステラーノ Felix N. Castellano

フェリックス・カステラーノ(Felix N. Castellano、19xx年x月xx日(ニューヨー…

「第22回 理工系学生科学技術論文コンクール」の応募を開始

日刊工業新聞社とモノづくり日本会議は、理工系学生(大学生・修士課程の大学院生、工業高等専門学校生)を…

みんなおなじみ DMSO が医薬品として承認!

2021年1月22日、間質性膀胱炎治療薬ジメチルスルホキシド (商品名ジムソ膀胱内注…

中山商事のWebサイトがリニューアル ~キャラクターが光る科学の総合専門商社~

中山商事株式会社のWebサイトがリニューアルされました。新サイトは、オリジナルキャラクタ達がお迎えし…

光触媒水分解材料の水分解反応の活性・不活性点を可視化する新たな分光測定手法を開発

第325回のスポットライトリサーチは、中央大学大学院 応用化学専攻 分光化学システム研究室(片山研究…

太陽ホールディングスってどんな会社?

私たち太陽ホールディングスグループは、パソコンやスマートフォンなどのIT機器やデジタル家電、車載用電…

Chem-Station Twitter

PAGE TOP