[スポンサーリンク]

化学者のつぶやき

コロナウイルスが免疫システムから逃れる方法(2)

[スポンサーリンク]

前回の記事では、コロナウイルスの基礎知識とコロナウイルスが持つRNA分解酵素(EndoUについて述べました。EndoUは、RNAの塩基配列(A・U・G・C)において、U(ウラシル)の部位を切断する機能を持つことが知られています。しかし、なぜウイルスがRNA分解酵素を持っているのか、分解するターゲットは宿主のRNAなのかウイルスのRNAなのかなど、EndoUの具体的な役割は謎のままでした。今回は、このEndoUが、「コロナウイルスが宿主の免疫システムから逃れるための鍵を握っている」という興味深い発見について紹介します。(論文はこちら

前回の記事の内容 :

  1. コロナウイルスとは
  2. ウイルスの感染の流れ
  3. コロナウイルスのゲノム構造

4. RNA分解酵素(EndoU)の機能

RNA分解酵素(EndoU)の機能を調べる単純な方法は、RNA分解能を失った不活性型EndoUを使い、感染した細胞に変化があるかを確認することです。不活性型のEndoUには、RNAの分解反応を行う部位(活性部位)に変異が加えられているため、RNAを分解することができません。Baker教授らは、野生型・不活性型のEndoUを持つコロナウイルスをそれぞれマウスの細胞に感染させ、免疫応答を調べました(図1)。すると、不活性型EndoUを持つコロナウイルスは、野生型EndoUを持つコロナウイルスに比べ、免疫反応を起こしやすいということが分かりました。このことから、EndoUの機能は免疫反応から逃れることに関連していると予想されます。

図1. (a) 野生型・不活性型EndoUを持つコロナウイルス(マウス肝炎ウイルス)の感染と、マウスの免疫反応の確認。 (b) マウスの免疫応答。I型インターフェロンの発現量を定量PCRにて測定。(グラフは論文より)

 

5. RNA分解酵素(EndoU)のターゲットは?:二重鎖RNA構造(dsRNA)

それでは、EndoUは一体どのような仕組みで免疫反応から逃れるための役割を果たしているのでしょうか?EndoUの機能は「RNA分子をU(ウラシル)の部分で切断すること」というのは分かっていますが、それが免疫反応とどう関わっているのかはよく分かっていません。そこで彼女らが着目したのが、ウイルスへの免疫反応においてとても重要だと知られている二重鎖RNA構造(dsRNA)です(図2)。

二重鎖RNA構造(dsRNA)というのは、その名の通り、RNA分子の鎖が二本結合している構造のことです。高校の生物の授業では、「DNAは二重鎖、RNAは一重鎖」と習うのが基本ですが、実はRNAも二重鎖構造を取ることがあります。特に、逆転写酵素(RNAからDNAを合成する酵素)を持たないコロナウイルスなどのウイルスは、RNAからRNAを複製するため、中間体として二重鎖RNA構造を作ります。また、一重鎖のRNAが分子内での塩基対形成によって、部分的に二重鎖RNA構造を持つこともあります。ヒトなどの免疫システムは、このようなウイルスの二重鎖RNA構造を認識できる分子(dsRNA受容体)を持っているので、ウイルスの侵入に応答して免疫反応を作動させることができます。

図2. ウイルスの二重鎖RNA構造(dsRNA)の例。

このような事実を踏まえ彼女らは、RNA分解酵素(EndoU)が、ウイルス自身のRNAを切断し、免疫システムに認識されやすい二重鎖RNA構造を壊しているのではないかと考えました。

6. 二重鎖RNA構造を持つウイルスRNAの同定

そこで、二重鎖RNA構造に結合する抗体を用いて、RNAサンプルの中から二重鎖構造(dsRNA)を持つものを分離し、得られたRNAの解析を行いました(図3)。図3bは、RNAシーケンシング(RNA-seq)という手法により、得られたRNAの配列情報をウイルスのゲノム配列にマッピングした結果です。この方法では、ウイルス遺伝子のどの配列(横軸)がどれくらい(縦軸)得られたかが分かります。また、RNA配列には、タンパク質をコードしている側の配列(プラス鎖)と、それに相補的な配列(マイナス鎖)があるので、それぞれを分けて調べることもできます。

図3. (a)ウイルス感染後のdsRNA量を調べる実験手順。野生型・不活性型のEndoUを持つウイルスをそれぞれ用いて結果を比較。(b)得られたdsRNAのRNAシーケンシングの結果。(論文より)

このRNAシーケンシングの結果、面白いことが2つ分かりました。一つ目は、プラス鎖とマイナス鎖では、マイナス鎖の方がdsRNAの検出量が圧倒的に多いということです。プラス鎖とマイナス鎖は、お互いに相補的であるのにも関わらず、マイナス鎖の方がdsRNA構造が多く検出されるというのは不思議です。二つ目は、マイナス鎖のデータにおいて、EndoUが不活性型の方が、野生型よりもdsRNA検出量が多いということです。これは、EndoUのRNA分解能が、dsRNA構造に何か影響を与えていることを示します。

この2点を総合すれば、どんなことが言えるでしょうか。まずは、プラス鎖とマイナス鎖の違いを考えてみます。コロナウイルスは、「一本鎖プラス鎖RNAウイルス」の一種で、ゲノムRNAの末端にはアデニン塩基(A)がたくさん並んだポリA配列があることが知られています(図4)。(ポリA配列は、ヒトを含む真核生物のmRNAが共通して持っている配列ですが、多くのウイルスのRNAもポリA配列を持っています。)このウイルスがRNAを複製するとき、ポリA配列と相補的なポリU配列を持ったマイナス鎖RNAが作られます。EndoUの機能は、RNAをU(ウラシル)の位置で切断することなので、筆者らはEndoUの機能は、マイナス鎖RNAが持つポリU配列を切断することなのではないかと考えました。

図4. プラス鎖・マイナス鎖RNAの末端配列。

 

7. EndoUはポリU配列を切断する

このような予想に基づき、彼女らは抽出したRNAサンプルのうち、ポリU配列を持っているRNAの量を調べました(図5a)。すると、野生型EndoUを持つウイルスを用いた場合には、不活性型に比べ、ポリU配列を持つRNAの量がかなり少ないということが分かりました。これは、「EndoUがポリU配列を分解する」という考えに一致しています。

また、ポリU配列がEndoUのターゲットであるのであれば、ポリU配列を持つRNAと持たないRNAにおいて、免疫応答に違いが出るはずです。そこで、試験管でそれぞれのRNAを合成し、免疫応答を調べました(図5b, c)。すると、予想通り、ポリU配列を持たないRNAでは、免疫応答が抑えられるというデータが得られました。

図5. (a) qPCRによる、ポリU配列を持つRNA量の測定。RNAは、それぞれ野生型・不活性型EndUを持つウイルスに感染させた細胞から抽出。(論文より)(b, c) 試験管で合成したRNA分子の免免疫原性測定。それぞれのRNA分子をマウス細胞に与え、I型インターフェロン(IFNβ1)の発現量を測定。ポリI:Cは、ポジティブコントロール。

 

8. コロナウイルスがEndoUを使って免疫システムから逃れる仕組み

さて、以上の結果から、筆者らは図6のようなモデルを提唱しました。

EndoUの働きがなければ、ウイルスのRNAはポリU配列の部分で二重鎖構造を作り、免疫システムに検知されてしまいます。そこで、ウイルスはポリU配列を分解できるRNA分解酵素(EndoU)を使って自分のRNAを切断します。これにより、RNA二重鎖構造ができなくなるので、ウイルスは免疫システムから逃れることができます。

図6. コロナウイルスがEndoUによって免疫システムから逃れる仕組み。

 

9. おわりに

今回取り上げたEndoUは、ヒトに感染するコロナウイルスを含め、全てのコロナウイルスが持っています。それなので、今回の発見は感染症の治療薬やワクチンの開発においても役立つかもしれません。ポリU配列がどのような高次構造をとるのか、EndoUの機能はどのように制御されているのか、まだまだ分からないことはいろいろあるので、今後の報告が期待されます。

参考文献

  • Deng, X.; Deng, X.; Hackbart, M.; Mettelman, R. C.; O’Brien, A.; Mielech, A. M.; Yi, G.; Kao, C. C.; Baker, S. C. PNAS 2017, 114, E4251. DOI: 10.1073/pnas.1618310114
  • Deng, X.; Baker, S. C. Virology 2018, 517, 157. DOI: 10.1016/j.virol.2017.12.024

関連リンク

関連書籍

[amazonjs asin=”4422430270″ locale=”JP” title=”美しい電子顕微鏡写真と構造図で見るウイルス図鑑101″] [amazonjs asin=”4797365315″ locale=”JP” title=”ウイルスと感染のしくみ なぜ感染し、増殖するのか!? その驚くべきナゾに迫る!! (サイエンス・アイ新書)”]
Avatar photo

kanako

投稿者の記事一覧

アメリカの製薬企業の研究員。抗体をベースにした薬の開発を行なっている。
就職前は、アメリカの大学院にて化学のPhDを取得。専門はタンパク工学・ケミカルバイオロジー・高分子化学。

関連記事

  1. セルロース由来バイオ燃料にイオン液体が救世主!?
  2. 経済産業省ってどんなところ? ~製造産業局・素材産業課・革新素材…
  3. お”カネ”持ちな会社たちー2
  4. 電化で実現する脱炭素化ソリューション 〜蒸留・焼成・ケミカルリ…
  5. 反応経路自動探索が見いだした新規3成分複素環構築法
  6. 3Mとはどんな会社?
  7. 糖鎖合成化学は芸術か?
  8. ヒドロアシル化界のドンによる巧妙なジアステレオ選択性制御

注目情報

ピックアップ記事

  1. ジェフ・ボーディ Jeffrey W. Bode
  2. 杏林製薬 耳鳴り治療薬「ネラメキサン」の開発継続
  3. ワーグナー・メーヤワイン転位 Wagner-Meerwein Rearrangement
  4. 面接官の心に刺さる志望動機、刺さらない志望動機
  5. ペロブスカイト太陽電池の学理と技術: カーボンニュートラルを担う国産グリーンテクノロジー (CSJカレントレビュー: 48)
  6. パッセリーニ反応 Passerini Reaction
  7. 【食品・飲料業界の方向け】 マイクロ波がもたらすプロセス効率化と脱炭素化 低温焙煎・抽出・乾燥・凍結乾燥・噴霧乾燥・ケミカルリサイクル
  8. 求核剤担持型脱離基 Nucleophile-Assisting Leaving Groups (NALGs)
  9. 【産総研・触媒化学研究部門】新卒・既卒採用情報
  10. ジフェニルオクタテトラエン (1,8-diphenyl-1,3,5,7-octatetraene)

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2020年4月
 12345
6789101112
13141516171819
20212223242526
27282930  

注目情報

最新記事

異方的成長による量子ニードルの合成を実現

第693回のスポットライトリサーチは、東京大学大学院理学系研究科(佃研究室)の髙野慎二郎 助教にお願…

miHub®で叶える、研究開発現場でのデータ活用と人材育成のヒント

参加申し込みする開催概要多くの化学・素材メーカー様でMI導入が進む一…

医薬品容器・包装材市場について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、医…

X 線回折の基礎知識【原理 · 基礎知識編】

X 線回折 (X-ray diffraction) は、原子の配列に関する情報を得るために使われる分…

有機合成化学協会誌2026年1月号:エナミンの極性転換・2-メチル-6-ニトロ安息香酸無水物(MNBA)・細胞内有機化学反応・データ駆動型マルチパラメータスクリーニング・位置選択的重水素化法

有機合成化学協会が発行する有機合成化学協会誌、2026年1月号がオンラインで公開されています。…

偶然と観察と探求の成果:中毒解毒剤から窒素酸化物を窒素分子へ変換する分子へ!

第692回のスポットライトリサーチは、同志社大学大学院理工学研究科(小寺・北岸研究室)博士後期課程3…

嬉野温泉で論文執筆缶詰め旅行をしてみた【化学者が行く温泉巡りの旅】

論文を書かなきゃ!でもせっかくの休暇なのでお出かけしたい! そうだ!人里離れた温泉地で缶詰めして一気…

光の強さで分子集合を巧みに制御!様々な形を持つ非平衡超分子集合体の作り分けを実現

第691回のスポットライトリサーチは、千葉大学大学院 融合理工学府 分子集合体化学研究室(矢貝研究室…

化学系研究職の転職は難しいのか?求人動向と転職を成功させる考え方

化学系研究職の転職の難点は「専門性のニッチさ」と考えられることが多いですが、企業が求めるのは研究プロ…

\課題に対してマイクロ波を試してみたい方へ/オンライン個別相談会

プロセスの脱炭素化及び効率化のキーテクノロジーである”マイクロ波”について、今回は、適用を検討してみ…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP