[スポンサーリンク]

化学者のつぶやき

オゾンと光だけでアジピン酸をつくる

さアジピン酸(adipic acid)といえば高校でも習うナイロン6-6の原料であり、現在でも最も重要な化学工業の原料の一つと言っても過言ではありません。

2013年現在、350トン以上生産され、過去5年の生産量の推移をみると、その生産量は毎年5%以上増加しています。

この度、そのアジピン酸を、オゾン(O3)と光だけでつくってしまうという驚愕な研究結果がScienceに報告されました。

 

One-pot room-temperature conversion of cyclohexane to adipic acid by ozone and UV light

Hwang, K.; Sagadevan, A. Science 2014. DOI: 10.1126/science.1259684

 

どのように工業生産されている?

そもそもアジピン酸はどのように工業生産されているのでしょうか。下記のシクロヘキサンを原料とした硝酸酸化法が代表的な合成法です。

2014-12-24_06-29-30

アジピン酸の代表的な工業生産法

 

まずシクロヘキサンをコバルトもしくはマンガン触媒下、高温・高圧条件で酸化することでシクロヘキサンおよびシクロヘキサノールの混合物にします。得られた混合物は俗にKAオイルといわれ、アジピン酸の原料だけでなくシクロヘキサンとシクロヘキサノールを蒸留で分けて様々な化学製品の原料として使われることからその生産量はアジピン酸の倍ほどと言われています。そのKAオイルを硝酸酸化することで、アジピン酸へと導きます。硝酸酸化の転化率はとても高く、数%の副生成物は生じますが、問題なく進行します。大変効率のよいプロセスのように思えますが、主に以下の大きな問題点があります。

 

1. シクロヘキサンの酸化の転化率は4-11%と低い

2. 反応条件に高温もしくは高圧を必要とする

3.硝酸酸化により生成される二酸化窒素(NO2)が環境汚染の原因となっている

 

特に3に関しては

「1日平均値が0.04~0.06ppmの範囲内またはそれ以下であること、またゾーン内にある地域については原則として現状程度の水準を維持しまたはこれを大きく上回らないこと」

とされており、二酸化窒素(NO2)は代表的な環境汚染物質としての地位を確立しています。つまり相当だめなやつです。

 

二酸化窒素を生成しない方法

そういうわけで二酸化窒素を生成しない方法が研究されてきました。代表的な手法は野依らが開発したシクロヘキセン酸化法です。[1]

2014-12-24_06-30-43

野依らのアジピン酸合成法

 

出発物質をシクロヘキセンとしてそれを過酸化水素・タングステン触媒で酸化することにより、高収率でアジピン酸が得られかつ復姓するのは水だけという大変クリーンな反応です。しかし、そもそもより高価なシクロヘキセン(vsシクロヘキサン)や過酸化水素(vs 酸素)を用いなければならない、といった欠点があります。

 

オゾンと水だけで反応させる

さて、本題となりますが今回報告された方法は以下のとおり。シクロヘキサンに光照射下オゾンを作用させるだけでアジピン酸に変換できます。

2014-12-26_14-52-49

新しいアジピン酸の合成法

しかも高温・高圧条件を必要とせず、室温・1気圧で反応します。転化率は中程度ですが、シクロヘキサンから考えれば硝酸酸化法に比べて大変高い転化率になります。生成物の選択性は少し低いのが難点ですが、KAオイルから始めると非常に高い収率と選択性でアジピン酸に変換可能です。

もっとも強調すべき点は、「こんな簡単な方法でできるんだ。」ということ。

論文のSuporting Informationに実験方法が写真で掲載されています。

光照射下のオゾン酸化でアジピン酸をつくる方法(原著論文より抜粋)

光照射下のオゾン酸化でアジピン酸をつくる方法(原著論文より抜粋)

合成方法

a) シクロヘキサンを入れる

b) 100W Hgランプで照射下、オゾンをバブリングする

c) 白い固体が徐々に析出する

d) アジピン酸の粗生成物を得る

e) 酢酸エチルとヘキサンで固体を洗浄

f) 純粋なアジピン酸の出来上がり

 

このようにわかりやすく、かつ非常に簡単な方法のようです。まさにコロンブスの卵といわざるを得ない研究結果です。他にも様々な類縁体を同条件で変換することができます。詳しくは原著論文にて。

 

バートンチャレンジ

ノーベル化学賞受賞者であるバートンを冠して、1999年に5000ドルの賞金をかけ未解決の化学反応として提案された「バートンチャレンジ」という課題があります。[2]

それは

「n-ヘキサンを酸化してアジピン酸を85%以上の選択性で作れますか?」

というもの。

今回の反応はn-ヘキサンというわけではないですが、この課題の解答に匹敵するような研究結果ではないでしょうか。

まだまだ合成化学としてやらなければならないことはある。そう思わせる論文でした。

 

参考文献

  1. Sato, K.; Aoki, M.; Noyori, R. Science 1998,281, 1646. DOI: 10.1126/science.281.5383.1646
  2. Wilson, E.; Chem. Eng. News, 1999, 77, 24. DOI: 10.1021/cen-v077n001.p024
The following two tabs change content below.
webmaster
Chem-Station代表。早稲田大学理工学術院准教授。専門は有機化学。主に有機合成化学。分子レベルでモノを自由自在につくる、最小の構造物設計の匠となるため分子設計化学を確立したいと考えている。趣味は旅行(日本は全県制覇、海外はまだ20カ国ほど)、ドライブ、そしてすべての化学情報をインターネットで発信できるポータルサイトを作ること。

関連記事

  1. 計算化学:DFT計算って何?Part II
  2. 拡張Pummerer反応による簡便な直接ビアリール合成法
  3. 『Ph.D.』の起源をちょっと調べてみました② 化学(科学)編
  4. 【書籍】アリエナイ化学実験の世界へ―『Mad Science―炎…
  5. 電気化学と金属触媒をあわせ用いてアルケンのジアジド化を制す
  6. Chemistry Reference Resolverをさらに…
  7. 1と2の中間のハナシ
  8. 2013年ノーベル化学賞は誰の手に?トムソンロイター版

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. アルキルラジカルをトリフルオロメチル化する銅錯体
  2. 科学は探究心を与え続けてくれるもの:2016 ロレアル–ユネスコ女性科学者 日本奨励賞
  3. 還元的脱硫反応 Reductive Desulfurization
  4. ERATO伊丹分子ナノカーボンプロジェクト始動!
  5. 日本触媒で爆発事故
  6. ボーディペプチド合成 Bode Peptide Synthesis
  7. 有機合成化学協会誌2017年11月号:オープンアクセス・英文号!
  8. 直径100万分の5ミリ極小カプセル 東大教授ら開発
  9. 第25回「ペプチドを化学ツールとして細胞を操りたい」 二木史朗 教授
  10. 3Dプリンタとシェールガスとポリ乳酸と

関連商品

注目情報

注目情報

最新記事

ケミカルタイムズ 紹介記事シリーズ

関東化学が発行する化学情報誌「ケミカルタイムズ」。年4回発行のこの無料雑誌の紹介をしています。2…

光触媒ーパラジウム協働系によるアミンのC-Hアリル化反応

2015年、華中師範大学のWen-Jing Xiao・ Liang-Qiu Luらは、アミンα位での…

蓄電池 Battery

蓄電池 (Battery) とは電池の一種です.二次電池またはバッテリーとも呼ばれ,充放電が可能な電…

アメリカ大学院留学:実験TAと成績評価の裏側

前回、アメリカの大学院でのティーチングアシスタント(TA)について、講義TAの様子を紹介しました(ア…

有機合成化学協会誌 紹介記事シリーズ

有機合成化学に関わる方ならばおなじみの有機合成化学協会誌。有機合成化学協会の会員誌であり、様々な有機…

固体NMR

固体NMR(Solid State NMR)とは、核磁気共鳴 (NMR) 分光法の一種で固体そのもの…

Chem-Station Twitter

PAGE TOP