[スポンサーリンク]

化学者のつぶやき

オゾンと光だけでアジピン酸をつくる

さアジピン酸(adipic acid)といえば高校でも習うナイロン6-6の原料であり、現在でも最も重要な化学工業の原料の一つと言っても過言ではありません。

2013年現在、350トン以上生産され、過去5年の生産量の推移をみると、その生産量は毎年5%以上増加しています。

この度、そのアジピン酸を、オゾン(O3)と光だけでつくってしまうという驚愕な研究結果がScienceに報告されました。

 

One-pot room-temperature conversion of cyclohexane to adipic acid by ozone and UV light

Hwang, K.; Sagadevan, A. Science 2014. DOI: 10.1126/science.1259684

 

どのように工業生産されている?

そもそもアジピン酸はどのように工業生産されているのでしょうか。下記のシクロヘキサンを原料とした硝酸酸化法が代表的な合成法です。

2014-12-24_06-29-30

アジピン酸の代表的な工業生産法

 

まずシクロヘキサンをコバルトもしくはマンガン触媒下、高温・高圧条件で酸化することでシクロヘキサンおよびシクロヘキサノールの混合物にします。得られた混合物は俗にKAオイルといわれ、アジピン酸の原料だけでなくシクロヘキサンとシクロヘキサノールを蒸留で分けて様々な化学製品の原料として使われることからその生産量はアジピン酸の倍ほどと言われています。そのKAオイルを硝酸酸化することで、アジピン酸へと導きます。硝酸酸化の転化率はとても高く、数%の副生成物は生じますが、問題なく進行します。大変効率のよいプロセスのように思えますが、主に以下の大きな問題点があります。

 

1. シクロヘキサンの酸化の転化率は4-11%と低い

2. 反応条件に高温もしくは高圧を必要とする

3.硝酸酸化により生成される二酸化窒素(NO2)が環境汚染の原因となっている

 

特に3に関しては

「1日平均値が0.04~0.06ppmの範囲内またはそれ以下であること、またゾーン内にある地域については原則として現状程度の水準を維持しまたはこれを大きく上回らないこと」

とされており、二酸化窒素(NO2)は代表的な環境汚染物質としての地位を確立しています。つまり相当だめなやつです。

 

二酸化窒素を生成しない方法

そういうわけで二酸化窒素を生成しない方法が研究されてきました。代表的な手法は野依らが開発したシクロヘキセン酸化法です。[1]

2014-12-24_06-30-43

野依らのアジピン酸合成法

 

出発物質をシクロヘキセンとしてそれを過酸化水素・タングステン触媒で酸化することにより、高収率でアジピン酸が得られかつ復姓するのは水だけという大変クリーンな反応です。しかし、そもそもより高価なシクロヘキセン(vsシクロヘキサン)や過酸化水素(vs 酸素)を用いなければならない、といった欠点があります。

 

オゾンと水だけで反応させる

さて、本題となりますが今回報告された方法は以下のとおり。シクロヘキサンに光照射下オゾンを作用させるだけでアジピン酸に変換できます。

2014-12-26_14-52-49

新しいアジピン酸の合成法

しかも高温・高圧条件を必要とせず、室温・1気圧で反応します。転化率は中程度ですが、シクロヘキサンから考えれば硝酸酸化法に比べて大変高い転化率になります。生成物の選択性は少し低いのが難点ですが、KAオイルから始めると非常に高い収率と選択性でアジピン酸に変換可能です。

もっとも強調すべき点は、「こんな簡単な方法でできるんだ。」ということ。

論文のSuporting Informationに実験方法が写真で掲載されています。

光照射下のオゾン酸化でアジピン酸をつくる方法(原著論文より抜粋)

光照射下のオゾン酸化でアジピン酸をつくる方法(原著論文より抜粋)

合成方法

a) シクロヘキサンを入れる

b) 100W Hgランプで照射下、オゾンをバブリングする

c) 白い固体が徐々に析出する

d) アジピン酸の粗生成物を得る

e) 酢酸エチルとヘキサンで固体を洗浄

f) 純粋なアジピン酸の出来上がり

 

このようにわかりやすく、かつ非常に簡単な方法のようです。まさにコロンブスの卵といわざるを得ない研究結果です。他にも様々な類縁体を同条件で変換することができます。詳しくは原著論文にて。

 

バートンチャレンジ

ノーベル化学賞受賞者であるバートンを冠して、1999年に5000ドルの賞金をかけ未解決の化学反応として提案された「バートンチャレンジ」という課題があります。[2]

それは

「n-ヘキサンを酸化してアジピン酸を85%以上の選択性で作れますか?」

というもの。

今回の反応はn-ヘキサンというわけではないですが、この課題の解答に匹敵するような研究結果ではないでしょうか。

まだまだ合成化学としてやらなければならないことはある。そう思わせる論文でした。

 

参考文献

  1. Sato, K.; Aoki, M.; Noyori, R. Science 1998,281, 1646. DOI: 10.1126/science.281.5383.1646
  2. Wilson, E.; Chem. Eng. News, 1999, 77, 24. DOI: 10.1021/cen-v077n001.p024
The following two tabs change content below.
webmaster
Chem-Station代表。早稲田大学理工学術院准教授。専門は有機化学。主に有機合成化学。分子レベルでモノを自由自在につくる、最小の構造物設計の匠となるため分子設計化学を確立したいと考えている。趣味は旅行(日本は全県制覇、海外はまだ20カ国ほど)、ドライブ、そしてすべての化学情報をインターネットで発信できるポータルサイトを作ること。

関連記事

  1. π⊥ back bonding; 逆供与でπ結合が強くなる?!
  2. 普通じゃ満足できない元素マニアのあなたに:元素手帳2016
  3. ナイトレンの求電子性を利用して中員環ラクタムを合成する
  4. 研究室でDIY! ~明るい棚を作ろう~
  5. 立体選択的な(+)-Microcladallene Bの全合成
  6. Appel反応を用いるホスフィンの不斉酸化
  7. 書物から学ぶ有機化学4
  8. 有機合成化学協会誌2017年9月号:キラルケイ素・触媒反応・生体…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. ルーブ・ゴールドバーグ反応 その1
  2. 大日本住友製薬が発足 業界5位、将来に再編含み
  3. スルホン系保護基 Sulfonyl Protective Group
  4. 触媒的syn-ジクロロ化反応への挑戦
  5. 今度こそ目指せ!フェロモンでリア充生活
  6. なぜ青色LEDがノーベル賞なのか?ー雑記編
  7. ダルツェンス縮合反応 Darzens Condensation
  8. 新しい量子化学 電子構造の理論入門
  9. 化学研究ライフハック:ソーシャルブックマークを活用しよう!
  10. 高校生・学部生必見?!大学学術ランキング!!

関連商品

注目情報

注目情報

最新記事

酵素触媒によるアルケンのアンチマルコフニコフ酸化

酵素は、基質と複数点で相互作用することにより、化学反応を厳密にコントロールしています。通常のフラ…

イオンの出入りを制御するキャップ付き分子容器の開発

第124回のスポットライトリサーチは、金沢大学 理工研究域物質化学系錯体化学研究分野(錯体化学・超分…

リチウムイオン電池の課題のはなし-1

Tshozoです。以前リチウムイオン電池に関するトピックを2つほど紹介した(記事:リチウムイ…

アルコールをアルキル化剤に!ヘテロ芳香環のC-Hアルキル化

2015年、プリンストン大学・D. W. C. MacMillanらは、水素移動触媒(HAT)および…

三種類の分子が自発的に整列した構造をもつ超分子共重合ポリマーの開発

第123回のスポットライトリサーチは、テキサス大学オースティン校博士研究員(Jonathan L. …

超分子化学と機能性材料に関する国際シンポジウム2018

「超分子化学と機能性材料に関する国際シンポジウム2018」CEMS International Sy…

Chem-Station Twitter

PAGE TOP