[スポンサーリンク]

スポットライトリサーチ

局所的な“粘度”をプローブする羽ばたくFLAP蛍光分子

[スポンサーリンク]

第270回のスポットライトリサーチは、京都大学大学院理学研究科 化学専攻 集合有機分子機能研究室 修士二年生の木村 僚(きむら りょう)さんにお願いしました。

集合有機分子機能研究室は独創的なπ電子芳香環化合物を長年次々に産み出しており、第二回ケムステVシンポジウムでは齊藤尚平准教授が羽ばたく分子FLAP(FLexible and Aromatic Photofunctional system)の紹介をされていたのが記憶に新しい読者もいらっしゃるかもしれません。

今回紹介いただける内容は、そのFLAP分子の興味深い応用方法。蛍光性FLAP分子が羽ばたき度合いに応じて発光が変化することを利用して、局所的な粘度のセンサーとして応用できたという成果です。本成果は、Angew. Chem. Int. Ed.誌に原著論文として公開され京都大学JSTなどからプレスリリースされ、日経新聞などにも取り上げられています。

“Flapping Peryleneimide as a Fluorogenic Dye with High Photostability and Strong Visible‐Light Absorption”
Ryo Kimura, Hikaru Kuramochi, Pengpeng Liu, Takuya Yamakado, Atsuhiro Osuka, Tahei Tahara, Shohei Saito, Angew. Chem. Int. Ed. (2020),  doi: 10.1002/anie.202006198

指導に当たっている齊藤尚平准教授からは、木村さんに向けて以下のコメントをいただいています。

木村くんは比較的寡黙な学生ですが、研究室きっての努力家であり、彼が内に秘めたる熱情には底知れぬものを感じます。私の勘違いかもしれませんが。

短いながらも、深い信頼関係がうかがえるコメントでした!
それでは、木村さんからのメッセージをご覧ください!

Q1. 今回プレスリリースとなったのはどんな研究ですか?簡単にご説明ください。

ペリレンイミドを「翼」に用いた新たなFLAP分子(ペリレンFLAP)の合成を行うとともに、励起状態ダイナミクスを明らかにし、わずかな粘度の違いに依存して蛍光が増大する性質を明らかにしました。

ペリレンイミドは染料にも使われる有名な物質で、一般的に光を当てると強い蛍光を発し、強い光にさらされても壊れにくいという性質があります。しかし、今回合成したペリレンFLAPは、光に安定ではあるものの、発する蛍光は非常に弱いことが判りました。共同研究による超高速分光測定の結果、ペリレンFLAPは励起状態で平面化し、大部分は非常に速く失活している(蛍光を発さない)ことが明らかとなり、柔軟な骨格(COT)を縮環させたことによるダイナミクスの大きな変化を観察することに成功しました。

さらにペリレンFLAPは溶媒の粘度が高くなるにつれて、蛍光が強くなり、蛍光寿命(光によって励起された分子が蛍光を発光して基底状態に戻るまでの時間)が長くなることが判明しました。例として、ヘキサン (粘度:0.3 cP) に溶解させた場合、蛍光量子収率(励起された分子のうち、蛍光を発する分子の割合)は2%程度であり、蛍光寿命は120 ピコ秒(ps)なのですが、ヘキサデカン(粘度:3 cP)の場合、蛍光量子収率は8%と4倍に向上し、蛍光寿命は560 psまで長くなりました。最終的に、PMMA(ポリメタクリル酸メチル)膜に分散させて固めたところ、蛍光量子収率は18%まで向上し、蛍光寿命は1.6 ナノ秒 (ns)まで長くなりました。ほぼ発光しなかった化合物が環境変化で蛍光性になる性質(フルオロジェニック)はペリレンイミドの類では非常に珍しく、蛍光寿命の変化によって数cPというごく小さな粘度変化(25 ℃の水で1 cP前後)を見分けられることは、光技術への応用、特に蛍光寿命の違いによって局所粘度分布を可視化することのできる顕微鏡技術(FLIM)が期待できると考えています。

Q2. 本研究テーマについて、自分なりに工夫したところ、思い入れがあるところを教えてください。

ペリレンFLAPの励起状態ダイナミクスを明らかにするために、量子化学計算を行っているのですが、実験結果をうまく説明するための適切な計算手法を見つけるために試行錯誤を繰り返しました。当時は、量子化学計算のやり方を教わったばかりで先輩に相談しつつ計算に明け暮れていたことを覚えています。研究室には量子化学計算を行える高性能コンピュータがあるのですが、半分以上を一人で占有していた時もありました。

また、ペリレンFLAPが従来のFLAPに比べて光安定であることを示す実験ではペリレンFLAPの溶液に長時間光を当て続け、数時間ごとに吸光測定を行って退色度合いを調査したのですが、とにかく時間がかかり、研究室に泊まり込んで測定を行ったことは記憶に新しいです。

Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?

ペリレンFLAPの示す蛍光は弱いのですが、合成の過程で発生する副生成物は非常によく光ります。そのため、少量の副生成物で光学測定に大きな影響を及ぼすことになります。実際、精製が十分でないサンプルで測定を行ってしまい、ダイナミクスの解釈を誤りかけたことがありました。そのため、サンプルの純度には特に気を配りました。通常、化合物を精製する過程では、カラムクロマトグラフィーや再結晶を行って純度を向上させることが多いかと思います。ペリレンFLAPの場合、これらとともに、分取用だけでなく分析用のHPLC(高速液体クロマトグラフィー)を用いて少量ずつ精製を行い、できる限りサンプル純度の向上を目指しました。この精製作業は多くの試行錯誤と長い時間を要する作業であり、苦難の道のりでした。

また、論文としてまとめるのが初めてだったということもあり、齊藤先生のOKが出るまでに何度も修正を繰り返したことを覚えています。特に、論文のSupporting Informationは書き始めてから30回以上修正を行っており、非常に苦労しました。

Q4. 将来は化学とどう関わっていきたいですか?

今回のペリレンFLAPが粘度応答性をもつように、FLAPには様々な機能を伴うものがあり、どのようなことに応用できるか、を考えることが多いです。一方で、今まで誰も合成したことがない新しい分子を自分自身の手で創り出すという化学の基礎的な側面も大事にしたいと思っています。

Q5. 最後に、読者の皆さんにメッセージをお願いします。

自分自身、研究というものを始めてまだまだ日が浅いのですが、既報でも反応をやってみて化合物が合成できたとか、条件検討の結果、より収率を高めることができたとか、小さなことでも成功体験は自信につながると感じました。実験がうまくいかない、結果が出ないことが続き、精神的にもつらく、心が折れそうだったこともありましたが、そのような成功体験が心の支えになって、研究を進めようという原動力になっているような気がします。

最後になりますが、学部生の時から研究指導して下さった齊藤尚平先生をはじめとする研究室メンバーの皆様、共同研究にてお世話になりました倉持光先生、田原太平先生、そして今回、研究を紹介する機会を下さいましたケムステーションスタッフの皆様に深く感謝申し上げます。

関連リンク

  1. 京都大学大学院理学研究科化学専攻 集合有機分子機能研究室
  2. プレスリリース:わずかな粘度の違いを感じとる「羽ばたく蛍光分子」を開発 ~ナノサイズの動きで液体のサラサラ度を測る~
  3. 蛍光粘度プローブとしての性能について、従来型の結合回転型プローブ(BODIPY)と比較した続報
    R. Kimura, H. Kitakado, A. Osuka, S. Saito*, Bull. Chem. Soc. Jpn. 2020, 93, 1102-110, doi: 10.1246/bcsj.20200117.
  4. 励起状態芳香族性の強さを調整してS1のenergy profileの形を制御した報告
    Ryota Kotani, Li Liu, Pardeep Kumar, Hikaru Kuramochi, Tahei Tahara,* Pengpeng Liu, Atsuhiro Osuka, Peter B. Karadakov,* and Shohei Saito*, J. Am. Chem. Soc. in press. doi: 10.1021/jacs.0c05611.

研究者の略歴

名前: 木村 僚 (きむら りょう)

所属: 京都大学大学院理学研究科化学専攻 集合有機分子機能研究室

専門: 有機化学、光化学

略歴:2019/3 京都大学理学部 卒

2019/4- 京都大学大学院理学研究科化学専攻 修士課程在学

 

spectol21

投稿者の記事一覧

ニューヨークでポスドクやってました。今は旧帝大JK。専門は超高速レーザー分光で、分子集合体の電子ダイナミクスや、有機固体と無機固体の境界、化学反応の実時間観測に特に興味を持っています。

関連記事

  1. 創薬人育成サマースクール2019(関東地区) ~くすりを創る研究…
  2. ガン細胞を掴んで離さない分子の開発
  3. ルーブ・ゴールドバーグ反応 その1
  4. 結晶格子の柔軟性制御によって水に強い有機半導体をつくる
  5. #おうち時間を充実させるオンライン講義紹介 ーナノテクー
  6. ベンジル位アセタールを選択的に酸素酸化する不均一系触媒
  7. Skype英会話の勧め
  8. 学振申請書を磨き上げる11のポイント [文章編・前編]

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 三井化学、「環状オレフィンコポリマー(商標:アペル)」の生産能力増強を決定
  2. 超一流化学者の真剣勝負が生み出した丸かぶり論文
  3. 東芝やキヤノンが優位、微細加工技術の「ナノインプリント」
  4. トリス(ペンタフルオロフェニル)ボラン : Tris(pentafluorophenyl)borane
  5. 「引っ張って」光学分割
  6. 福井鉄道と大研化学工業、11月に電池使い車両運行実験
  7. キラルアニオン相間移動-パラジウム触媒系による触媒的不斉1,1-ジアリール化反応
  8. ストーク エナミン Stork Enamine
  9. アルカリ金属でメトキシアレーンを求核的にアミノ化する
  10. 抗結核薬R207910の不斉合成

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

第142回―「『理想の有機合成』を目指した反応開発と合成研究」山口潤一郎 教授

第142回の化学者インタビューは日本から、皆さんご存じ、山口潤一郎教授の登場です。名古屋大学理学部化…

【書籍】ゼロからの最速理解 プラスチック材料化学

今月発売された『ゼロからの最速理解 プラスチック材料化学』(佐々木 健夫 著,コロナ社)という書籍を…

重水は甘い!?

同位体はある元素、すなわち同一の原子番号をもつ原子核において、中性子数の異なる核種のことをいいますね…

人物でよみとく化学

概要化学の歴史をつくった約50人を収録。高校・大学の化学の勉強に役立つ16テーマをあつかい、…

金属ナトリウム分散体(SD Super Fine ™)

概要金属ナトリウム分散体(SD Super Fine ™)は、金属ナトリウムの微粒…

アクセラレーションプログラム 「BRAVE 2021 Spring」 参加チームのエントリー受付中!(5/10〆切)

Beyond Next Ventures株式会社(本社:東京都中央区、代表取締役社⻑:伊藤毅、以下「…

赤キャベツから新しい青色天然着色料を発見 -青色1号に代わる美しく安定なアントシアニン色素-

青の食品着色料として広く使われる化学合成の「青色1号」とほぼ同じ色で、長期保存時の安定性に優れた天然…

砂塚 敏明 Toshiaki Sunazuka

砂塚 敏明 (すなづか としあき)は、日本の有機化学者である。学校法人北里研究所 理事、北里大学大村…

Chem-Station Twitter

PAGE TOP