[スポンサーリンク]

一般的な話題

プロセス化学ー合成化学の限界に挑戦するー

 

 

皆さんは「プロセス化学」と聞いて何を思い浮かべるでしょうか?

 

周りの人からよく聞くのは

「収率あげるんですよね?」

「結晶化が大事なんですよね?」

「でかいスケールで反応を仕込むんですよね?」

 

どれもプロセス化学の一部を表してはいますが、そのイメージは大分本質と乖離があるように感じます。(かくいう私も実際にプロセス化学の仕事に携わるまでは、上述のようなイメージ程度しか持っておりませんでした)

そこで、今回は医薬品の化学合成を例にとってプロセス化学について少し紹介させて頂きます!

 

 

一般に医薬品の開発過程において、メディシナルケミストリー(以下、メドケム)分野で活性があると判断された化合物はプロセス化学部門に上がってきます。その際、メドケムで採用された合成ルートを用いて収率をあげ、そのままスケールアップすれば良いのでは??と思われる方もいるかも知れません。

 

でも皆さん、原料合成の際にスケールをあげると何故か反応が上手く進行しない!!

なんて経験をしたことはありませんか?「スケールアップは3倍までにしなさい」なんて言う人もいます。

 

医薬品は世界中の患者さんに供給しなければいけないため、スケールアップの量も半端ではありません!まぁ、単純なスケールアップでは上手くいかないだろうということは想像に難くないと思います。

 

では、どうすればスケールアップがうまくいくのか?

 

それを研究する仕事、すなわちフラスコとプラントをつなぐ研究がプロセス化学のお仕事なのです。そのため、我々プロセスケミストが研究で使っている反応器は決して大きな釜を用いる必要はなく、皆さんが毎日扱っているようなガラス製のナスフラスコだとかマイヤーであり、実験(研究)を行う上では何ら大学の研究室と大差ありません。プロセス化学=大スケールというイメージがつきまといますが、大スケールでの合成はプロセス化学の研究の結果でしかありません。すなわち、プロセス化学研究の結果、プラントスケールでの合成が可能になります。

では、具体的にプロセスケミストはどんなことをしているのか?

 

プロセス化学のゴールは、より良い工業的合成法を設定すること

です。

それを達成するため、プロセス化学研究では以下のようなことに重きを置いています。

1. 環境に配慮した製法であること

トンスケールでの合成では廃棄物の量も半端じゃありません!反応の副生物の処理はシリアスな問題です。

2. 操作が簡便であること

複雑な操作はミスを誘発します。

3. 安全であること

爆発が起これば、被害の大きさは尋常ではありません。

オペレーターへの影響も考えましょう。

4. 品質が一定して保証できること

人の命に関わる仕事です。含有不純物の量や残留溶媒など事細かな決まりがあります。

その他、各企業で細かなルールが決まっているようですが主たるものは、このくらいだと思います

これらを実現するためにプロセスケミストは、合成ルートの変更(メドケムルートが必ずしも商用に用いられるわけではない)、精製法の開拓、化合物の安定性の担保、不純物量のコントロール、時にはプラントの立ち上げ・設計などを担当し、その研究範囲は広範囲に及びます。

これら全てを満たすような製造法を創ろうとすると、針の穴を通すようなプロセス設計もざらではありません。(あちらを立てれば、こちらが立たぬと言うような状況は多く存在します。)合成のスケールとは裏腹に、とても細かな研究が求められます。

このように、プロセス化学研究は

合成化学という手法を用いて、安全かつ単純な方法で、出来るだけクリーンに、再現性良く薬をたくさん造るという(1つの)理想的な合成法を追い求める研究

です。すなわち、それは

「合成化学がどこまでやれるのか」という合成化学の限界に挑戦している学問の1つであるといっても過言ではないと思います。

皆さんも1つの化合物の合成法を突き詰めて考え、工業化にまで発展させてみませんか?自分の携わった化合物が世に出ることや、その製造法を自らの手で創りだし、反応・製造が成功した時の嬉しさは、ひとしおだと思います。以前、このブログでもとりあげていた研究の意義が、とても分かりやすいという点もプロセス化学研究の1つの長所と言って良いのではないでしょうか。

以上、徒然なるままではありますがプロセス化学の仕事を紹介させて頂きました!

 

関連リンク

 

 

関連書籍

 

The following two tabs change content below.
carbene

carbene

博士見習い。専門は分子触媒化学。化学史や反応や現象の成り立ちに興味がある。夢は化学を熱く語ることができるサイエンスライター。

関連記事

  1. 有機の王冠
  2. NHC銅錯体の塩基を使わない直接的合成
  3. ルテニウム触媒によるC-C結合活性化を介した水素移動付加環化型カ…
  4. 高機能・高性能シリコーン材料創製の鍵となるシロキサン結合のワンポ…
  5. 炭素をつなげる王道反応:アルドール反応 (2)
  6. 化学工場災害事例 ~爆発事故に学ぶ~
  7. フラスコ内でタンパクが連続的に進化する
  8. 一流科学者たちの経済的出自とその考察

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 糖鎖を直接連結し天然物をつくる
  2. 有機合成化学特別賞―受賞者一覧
  3. 塩野義 抗インフルエンザ薬を承認申請
  4. 色素増感型太陽電池 / Dye-sensitized Solar Cells
  5. 超原子価ヨウ素 Hypervalent Iodine
  6. 井口 洋夫 Hiroo Inokuchi
  7. ニッケル錯体触媒の電子構造を可視化
  8. 学振申請書の書き方とコツ
  9. グラフィカルアブストラクト付・化学系ジャーナルRSSフィード
  10. N末端選択的タンパク質修飾反応 N-Terminus Selective Protein Modification

関連商品

注目情報

注目情報

最新記事

モリブデンのチカラでニトロ化合物から二級アミンをつくる

川上原料のニトロアレーンとアリールボロン酸を用いた二級アミン合成法が報告された。空気下で安定なモリブ…

化学的に覚醒剤を隠す薬物を摘発

化学変化を加えると覚醒剤に加工できる指定薬物を密輸しようとしたなどとして、東京税関成田支署と成田空港…

ニコラス-ターナー Nicholas Turner

ニコラス ターナー (Nicholas Turner, 1960年6月2日イギリス、ケント州Orpi…

博士課程に進学したあなたへ

どういった心構えで研究生活を送るべきかについて、昨年ですが面白い記事がNatureに出ていたので、紹…

【書籍】フロンティア軌道論で理解する有機化学

「軌道の見方がわかる!有機反応を一貫して軌道論に基づいて解説。新しい有機化学を切り拓く読者へ…

少量の塩基だけでアルコールとアルキンをつなぐ

カリウムtert-ブトキシドを触媒とするα-アルキルケトン合成法が報告された。遷移金属を用いず、高い…

Chem-Station Twitter

PAGE TOP