[スポンサーリンク]

化学者のつぶやき

内部アルケン、ついに不斉ヒドロアミノ化に屈する

[スポンサーリンク]

不活性内部アルケンとアミンとの不斉ヒドロアミノ化反応が報告された。新規なカチオン性キラルイリジウム触媒とアミノ化剤に2-アミノピリジンを用いたことが成功の鍵である

遷移金属触媒によるアルケンの不斉ヒドロアミノ化

アルケンに対するアミンN–H結合の触媒的不斉付加反応、すなわちヒドロアミノ化は、高い原子効率で有用なキラルアミンを合成できる。これまで、パラジウムやニッケル、イリジウムなど種々のキラル遷移金属触媒が開発され、共役アルケンや末端アルケン、歪んだアルケンの不斉ヒドロアミノ化が達成された(図1A)[1]。しかし、内部アルケンに対する手法の開発は挑戦的な課題として残されている。これは、内部アルケンが遷移金属触媒に対して配位しにくいこと、触媒がアルケンの異性化を併発し、エナンチオ選択性や位置選択性が低下することが原因である。変法としてBuchwaldらは、キラル銅触媒とシラン還元剤存在下、求電子的アミノ化剤を用いる「形式的な」内部アルケンの不斉ヒドロアミノ化を報告した(図1B)[2]。しかし、この手法は原子効率に課題を残す。
本論文の著者であるHartwigらは、これまでにイリジウム触媒を用いたヒドロアミノ化を数例報告している[3]。イリジウム触媒によるヒドロアミノ化は、①N–H結合の酸化的付加、②アルケンの配位挿入、③還元的脱離を経て進行する。2012年に柴田らは、イリジウム触媒をカチオン性にして②を、また配向性効果をもつ2-アミノピリジンをアミノ化剤として①を促進することで、末端アルケンの不斉ヒドロアミノ化を報告した(図1C)[4]。しかし、エナンチオ選択性は中程度であり、さらに不活性内部アルケンには適用できなかった。
今回Hartwigらは、イリジウム触媒による不活性内部アルケンの不斉ヒドロアミノ化を達成した(図1D)。柴田らと類似の戦略に則り、新規二座ホスフィン配位子を用いたことが本成功の鍵である。

図1. (A) 金属触媒による不斉ヒドロアミノ化 (B) 内部アルケンの不斉ヒドロアミノ化 (C) カチオン性イリジウムと2-アミノピリジンの利用

 

“Catalytic asymmetric addition of an amine N–H bond across internal alkenes”
Xi, Y.; Ma, S.; Hartwig, J. F. Nature 2020
DOI: 10.1038/s41586-020-2919-z

論文著者の紹介

研究者:John F. Hartwig 
研究者の経歴:
1986 BSc, A. B. Princeton University, USA (Prof. Maitland Jones Jr.)
1990 Ph.D., University of California, Berkeley, USA (Prof. Richard A. Anderson and Prof. Robert G. Bergman)
1990-1992 Postdoc, Massachusetts Institute of Technology, USA (Prof. Stephen J. Lippard)
1992-1996 Assistant Professor, Yale University, USA
1996-1998 Associate Professor, Yale University, USA
1998-2006 Professor, Yale University, USA
2006-2011 Professor, University of Illinoi, Urbana-Champaign, USA
2011- Professor, University of California, Berkeley, USA
研究内容:遷移金属触媒を用いた反応開発と機構解明: C–H官能基化、ヒドロ官能基化、クロスカップリング

論文の概要

著者らはカチオン性Ir/(S)-DTBM-SEGPHOS触媒存在下、(Z)-オクト-4-エン(2)を用いて、まずアミノピリジン1の効果を調査した(図2A)。その結果、2-アミノピリジン(1a)では反応が進行しなかったが、2-アミノ-6-メチルピリジン(1b)を用いるとヒドロアミノ化が進行し、3, 4, 5の混合物が収率53%で得られることがわかった。アミノ化剤に1bを用いて、次に触媒を検討した(図2B)。触媒の対アニオンをトリフルオロメタンスルホンイミド(NTf2)とし、配位子に新たに開発した(R)-TMS-SYNPHOS(L2)を用いた際に最も高い収率および位置・エナンチオ選択性で3bを与えた。著者らはこれを最適条件としアルケンの基質一般性を調査した(図2C)。対称な鎖状Z-アルケンからキラルアミン3baが高収率かつ高エナンチオ選択性で得られた(3ba)。環状アルケンとしてシクロペント-3-エンを用いても不斉ヒドロアミノ化が進行し、シクロペンチルアミン(3bb, 3bc)を良好な収率で与えた。3bcではトランス体が優先して得られる。極性官能基をもつ非対称アルケンでは、その官能基から遠い炭素にアミンが付加した化合物を優先的に与えた(3bd)。本反応により導入されるピリジルアミノ基は白金/酸触媒条件で水素添加した後、水素化ホウ素ナトリウムを作用させることで一級アミンへと誘導できる(図2D)。

図2. (A) ピリジルアミンの検討 (B) 触媒検討 (C) 基質適用範囲 (D) 一級アミンへの誘導

以上、カチオン性キラルイリジウム触媒を用いた不活性内部アルケンの不斉ヒドロアミノ化が開発された。今後、より高活性な触媒開発により、アルケンの当量の低減やE-アルケンの適用などの進展を期待したい。

 参考文献

  1. Huang, L.; Arndt, M.; Gooßen, K.; Heydt, H.; Gooßen, L. J. Late Transition Metal-Catalyzed Hydroamination and Hydroamidation. Chem. Rev. 2015, 115, 2596–2697. DOI: 10.1021/cr300389u
  2. Yang, Y.; Shi, S.-L.; Niu, D.; Liu, P.; Buchwald, S. L. Catalytic Asymmetric Hydroamination of Unactivated Internal Olefins to Aliphatic Amines. Science 2015, 349, 62–66. DOI: 1126/science.aab3753
  3. (a) Zhou, J. S.; Hartwig, J. F. Intermolecular, Catalytic Asymmetric Hydroamination of Bicyclic Alkenes and Dienes in High Yield and Enantioselectivity. J.Am. Chem. Soc. 2008, 130, 12220–12221. DOI: 10.1021/ja803523z (b) Sevov, C. S.; Zhou, J. S.; Hartwig, J. F. Iridium-Catalyzed Intermolecular Hydroamination of Unactivated Aliphatic Alkenes with Amides and Sulfonamides. J. Am. Chem. Soc. 2012, 134, 11960–11963. DOI: 10.1021/ja3052848
  4. Pan, S.; Endo, K.; Shibata, T. Ir(I)-Catalyzed Intermolecular Regio- and Enantioselective Hydroamination of Alkenes with Heteroaromatic Amines. Org. Lett. 2012, 14, 780–783. DOI: 10.1021/ol203318z
山口 研究室

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. プロテオミクス現場の小話(1)前処理環境のご紹介
  2. 【速報】2015年ノーベル生理学・医学賞ー医薬品につながる天然物…
  3. Reaxys PhD Prize 2016ファイナリスト発表!
  4. ゲルセジン型アルカロイドの網羅的全合成
  5. スルホンアミドからスルホンアミドを合成する
  6. 【なんと簡単な!】 カーボンナノリングを用いた多孔性ナノシートの…
  7. 親子で楽しめる化学映像集 その1
  8. 第一手はこれだ!:古典的反応から最新反応まで2 |第7回「有機合…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. サントリー、ビールの「エグミ物質」解明に成功
  2. UCLA研究員死亡事故・その後
  3. ナノスケールの虹が世界を変える
  4. 植物たちの静かな戦い
  5. デヴィッド・ニセヴィッツ David A. Nicewicz
  6. 第96回日本化学会付設展示会ケムステキャンペーン!Part I
  7. 分析技術ーChemical Times特集より
  8. Reaxys Prize 2012ファイナリスト45名発表!
  9. グローブボックスあるある
  10. 呉羽化学、社名を「クレハ」に

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2021年2月
« 1月   3月 »
1234567
891011121314
15161718192021
22232425262728

注目情報

注目情報

最新記事

新型コロナの飲み薬モルヌピラビルの合成・生体触媒を用いた短工程化

新型コロナウイルス (SARS-CoV-2) 感染症に対する飲み薬として、Merck…

秋吉一成 Akiyoshi Kazunari

秋吉 一成(あきよしかずなり)は日本の有機化学者である。京都大学大学院 工学研究科 高分子化学専攻 …

NIMS WEEK2021-材料研究の最新成果発表週間- 事前登録スタート

時代を先取りした新材料を発信し続けるNIMS。その最新成果を一挙ご紹介する、年に一度の大イベント「N…

元素記号に例えるなら何タイプ? 高校生向け「起業家タイプ診断」

今回は化学の本質とは少し離れますが、元素をモチーフにしたあるコンテンツをご紹介します。実験の合間…

多価不飽和脂肪酸による光合成の不活性化メカニズムの解明:脂肪酸を活用した光合成活性の制御技術開発の可能性

第346回のスポットライトリサーチは、東京大学 大学院総合文化研究科(和田・神保研究…

10手で陥落!(+)-pepluanol Aの全合成

高度な縮環構造をもつ複雑天然物ペプラノールAの全合成が、わずか10工程で達成された。Diels–Al…

吉野彰氏が2021年10月度「私の履歴書」を連載。

今年の10月はノーベル化学賞が有機化学分野から出て、物理学賞を真鍋淑郎先生が受賞して、非常に盛り上が…

ガラス工房にお邪魔してみたー匠の技から試験管制作体験までー

実験器具を試して見たシリーズ第10弾! ついにシリーズ10回目を迎えました。今回は特別編です…

ダイセルよりサステナブルな素材に関する開発成果と包括的連携が発表される

株式会社ダイセルは、環境にやさしい酢酸セルロースを当社独自の技術で加工した真球状微粒子を開発し、20…

市販の化合物からナノグラフェンライブラリを構築 〜新反応によりナノグラフェンの多様性指向型合成が可能に〜

第345回のスポットライトリサーチは、北海道大学大学院理学研究院 理論化学研究室(前田・高橋研究室)…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP