[スポンサーリンク]

化学者のつぶやき

内部アルケン、ついに不斉ヒドロアミノ化に屈する

[スポンサーリンク]

不活性内部アルケンとアミンとの不斉ヒドロアミノ化反応が報告された。新規なカチオン性キラルイリジウム触媒とアミノ化剤に2-アミノピリジンを用いたことが成功の鍵である

遷移金属触媒によるアルケンの不斉ヒドロアミノ化

アルケンに対するアミンN–H結合の触媒的不斉付加反応、すなわちヒドロアミノ化は、高い原子効率で有用なキラルアミンを合成できる。これまで、パラジウムやニッケル、イリジウムなど種々のキラル遷移金属触媒が開発され、共役アルケンや末端アルケン、歪んだアルケンの不斉ヒドロアミノ化が達成された(図1A)[1]。しかし、内部アルケンに対する手法の開発は挑戦的な課題として残されている。これは、内部アルケンが遷移金属触媒に対して配位しにくいこと、触媒がアルケンの異性化を併発し、エナンチオ選択性や位置選択性が低下することが原因である。変法としてBuchwaldらは、キラル銅触媒とシラン還元剤存在下、求電子的アミノ化剤を用いる「形式的な」内部アルケンの不斉ヒドロアミノ化を報告した(図1B)[2]。しかし、この手法は原子効率に課題を残す。
本論文の著者であるHartwigらは、これまでにイリジウム触媒を用いたヒドロアミノ化を数例報告している[3]。イリジウム触媒によるヒドロアミノ化は、①N–H結合の酸化的付加、②アルケンの配位挿入、③還元的脱離を経て進行する。2012年に柴田らは、イリジウム触媒をカチオン性にして②を、また配向性効果をもつ2-アミノピリジンをアミノ化剤として①を促進することで、末端アルケンの不斉ヒドロアミノ化を報告した(図1C)[4]。しかし、エナンチオ選択性は中程度であり、さらに不活性内部アルケンには適用できなかった。
今回Hartwigらは、イリジウム触媒による不活性内部アルケンの不斉ヒドロアミノ化を達成した(図1D)。柴田らと類似の戦略に則り、新規二座ホスフィン配位子を用いたことが本成功の鍵である。

図1. (A) 金属触媒による不斉ヒドロアミノ化 (B) 内部アルケンの不斉ヒドロアミノ化 (C) カチオン性イリジウムと2-アミノピリジンの利用

 

“Catalytic asymmetric addition of an amine N–H bond across internal alkenes”
Xi, Y.; Ma, S.; Hartwig, J. F. Nature 2020
DOI: 10.1038/s41586-020-2919-z

論文著者の紹介

研究者:John F. Hartwig 
研究者の経歴:
1986 BSc, A. B. Princeton University, USA (Prof. Maitland Jones Jr.)
1990 Ph.D., University of California, Berkeley, USA (Prof. Richard A. Anderson and Prof. Robert G. Bergman)
1990-1992 Postdoc, Massachusetts Institute of Technology, USA (Prof. Stephen J. Lippard)
1992-1996 Assistant Professor, Yale University, USA
1996-1998 Associate Professor, Yale University, USA
1998-2006 Professor, Yale University, USA
2006-2011 Professor, University of Illinoi, Urbana-Champaign, USA
2011- Professor, University of California, Berkeley, USA
研究内容:遷移金属触媒を用いた反応開発と機構解明: C–H官能基化、ヒドロ官能基化、クロスカップリング

論文の概要

著者らはカチオン性Ir/(S)-DTBM-SEGPHOS触媒存在下、(Z)-オクト-4-エン(2)を用いて、まずアミノピリジン1の効果を調査した(図2A)。その結果、2-アミノピリジン(1a)では反応が進行しなかったが、2-アミノ-6-メチルピリジン(1b)を用いるとヒドロアミノ化が進行し、3, 4, 5の混合物が収率53%で得られることがわかった。アミノ化剤に1bを用いて、次に触媒を検討した(図2B)。触媒の対アニオンをトリフルオロメタンスルホンイミド(NTf2)とし、配位子に新たに開発した(R)-TMS-SYNPHOS(L2)を用いた際に最も高い収率および位置・エナンチオ選択性で3bを与えた。著者らはこれを最適条件としアルケンの基質一般性を調査した(図2C)。対称な鎖状Z-アルケンからキラルアミン3baが高収率かつ高エナンチオ選択性で得られた(3ba)。環状アルケンとしてシクロペント-3-エンを用いても不斉ヒドロアミノ化が進行し、シクロペンチルアミン(3bb, 3bc)を良好な収率で与えた。3bcではトランス体が優先して得られる。極性官能基をもつ非対称アルケンでは、その官能基から遠い炭素にアミンが付加した化合物を優先的に与えた(3bd)。本反応により導入されるピリジルアミノ基は白金/酸触媒条件で水素添加した後、水素化ホウ素ナトリウムを作用させることで一級アミンへと誘導できる(図2D)。

図2. (A) ピリジルアミンの検討 (B) 触媒検討 (C) 基質適用範囲 (D) 一級アミンへの誘導

以上、カチオン性キラルイリジウム触媒を用いた不活性内部アルケンの不斉ヒドロアミノ化が開発された。今後、より高活性な触媒開発により、アルケンの当量の低減やE-アルケンの適用などの進展を期待したい。

 参考文献

  1. Huang, L.; Arndt, M.; Gooßen, K.; Heydt, H.; Gooßen, L. J. Late Transition Metal-Catalyzed Hydroamination and Hydroamidation. Chem. Rev. 2015, 115, 2596–2697. DOI: 10.1021/cr300389u
  2. Yang, Y.; Shi, S.-L.; Niu, D.; Liu, P.; Buchwald, S. L. Catalytic Asymmetric Hydroamination of Unactivated Internal Olefins to Aliphatic Amines. Science 2015, 349, 62–66. DOI: 1126/science.aab3753
  3. (a) Zhou, J. S.; Hartwig, J. F. Intermolecular, Catalytic Asymmetric Hydroamination of Bicyclic Alkenes and Dienes in High Yield and Enantioselectivity. J.Am. Chem. Soc. 2008, 130, 12220–12221. DOI: 10.1021/ja803523z (b) Sevov, C. S.; Zhou, J. S.; Hartwig, J. F. Iridium-Catalyzed Intermolecular Hydroamination of Unactivated Aliphatic Alkenes with Amides and Sulfonamides. J. Am. Chem. Soc. 2012, 134, 11960–11963. DOI: 10.1021/ja3052848
  4. Pan, S.; Endo, K.; Shibata, T. Ir(I)-Catalyzed Intermolecular Regio- and Enantioselective Hydroamination of Alkenes with Heteroaromatic Amines. Org. Lett. 2012, 14, 780–783. DOI: 10.1021/ol203318z
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 構造式を美しく書くために【準備編】
  2. 電気化学と金属触媒をあわせ用いてアルケンのジアジド化を制す
  3. レビュー多くてもよくね?
  4. 無保護アミン類の直接的合成
  5. 兄貴達と化学物質
  6. コンピューターが有機EL材料の逆項間交差の速度定数を予言!
  7. 軽くて強いだけじゃないナノマテリアル —セルロースナノファイバー…
  8. 有機合成研究者必携! 有機合成用反応剤プロトコル集

注目情報

ピックアップ記事

  1. 機構解明が次なる一手に繋がった反応開発研究
  2. アルキンから環状ポリマーをつくる
  3. オンライン|次世代医療・診断・分析のためのマイクロ流体デバイス~微量、迅速・簡便、精密制御機能をどう生かすか~
  4. フタロシアニン鉄(II) : Phthalocyanine Iron(II)
  5. 化学者の卵、就職サイトを使い始める
  6. チャールズ・リーバー Charles M. Lieber
  7. ダキン・ウェスト反応 Dakin-West Reaction
  8. フラーレンの単官能基化
  9. ゲルセジン型アルカロイドの網羅的全合成
  10. 市販の新解熱鎮痛薬「ロキソニン」って?

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2021年2月
1234567
891011121314
15161718192021
22232425262728

注目情報

最新記事

アクリルアミド類のanti-Michael型付加反応の開発ーPd触媒による反応中間体の安定性が鍵―

第622回のスポットライトリサーチは、東京理科大学大学院理学研究科(松田研究室)修士2年の茂呂 諒太…

エントロピーを表す記号はなぜSなのか

Tshozoです。エントロピーの後日談が8年経っても一向に進んでないのは私が熱力学に向いてないことの…

AI解析プラットフォーム Multi-Sigmaとは?

Multi-Sigmaは少ないデータからAIによる予測、要因分析、最適化まで解析可能なプラットフォー…

【11/20~22】第41回メディシナルケミストリーシンポジウム@京都

概要メディシナルケミストリーシンポジウムは、日本の創薬力の向上或いは関連研究分野…

有機電解合成のはなし ~アンモニア常温常圧合成のキー技術~

(出典:燃料アンモニアサプライチェーンの構築 | NEDO グリーンイノベーション基金)Ts…

光触媒でエステルを多電子還元する

第621回のスポットライトリサーチは、分子科学研究所 生命・錯体分子科学研究領域(魚住グループ)にて…

ケムステSlackが開設5周年を迎えました!

日本初の化学専用オープンコミュニティとして発足した「ケムステSlack」が、めで…

人事・DX推進のご担当者の方へ〜研究開発でDXを進めるには

開催日:2024/07/24 申込みはこちら■開催概要新たな技術が生まれ続けるVUCAな…

酵素を照らす新たな光!アミノ酸の酸化的クロスカップリング

酵素と可視光レドックス触媒を協働させる、アミノ酸の酸化的クロスカップリング反応が開発された。多様な非…

二元貴金属酸化物触媒によるC–H活性化: 分子状酸素を酸化剤とするアレーンとカルボン酸の酸化的カップリング

第620回のスポットライトリサーチは、横浜国立大学大学院工学研究院(本倉研究室)の長谷川 慎吾 助教…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP