[スポンサーリンク]

スポットライトリサーチ

光触媒の活性化機構の解明研究

[スポンサーリンク]

 

さて、話題の研究を実際に担当した若手研究者・大学院生等を紹介する「スポットライトリサーチ」。前回に引き続き、第二回目は神戸大学大学院理学研究科化学専攻大西研究室(主宰教授:大西洋先生)の博士課程1年生である、安龍杰さんにお願いしました。

大西研究室では界面反応や光触媒の動作メカニズムを理解するための基礎研究に力を注ぎ、ハイレベルな研究の成果をあげています。また、自らの力で将来を切り開こうとする留学生を受け入れることが、若年人口減少に直面する高等教育機関の責務であると認識し、多くの留学生を受け入れているそうです。今回インタビューを行った安さんも中国の蘭州大学を卒業し、来日から3年半で「光触媒を活性化するメカニズムの一端を解明」するという成果をあげています。

 

“Electron−Hole Recombination Controlled by Metal Doping Sites in NaTaO3 Photocatalysts”

An, L.; Onishi, H.; ACS Catal. 2015, 5, 3196. DOI: 10.1021/acscatal.5b00484

 

今回はプレスリリースのきっかけとなった上記の論文についてお話をうかがいました。それでは御覧ください。

 

Q1. 本研究はどんな研究ですか?簡単に説明してください

「 NaTaO3光触媒のAとBサイトへのSrドーパントの置換位置と光触媒活性をコントロールすると思われる励起電子-正孔再結合速度との関係に関する研究」(図1)です。

SrドープNaTaO3光触媒は今まで開発された光触媒の中でも水分解量子効率が一番高いレベルに入りました。

ところが、Srをドーピングすることによる電子-正孔再結合の抑制メカニズムははっきりしませんでした。今回、主にラマン分光法によるSrのBサイトドーピングの定性定量分析と紫外線励起赤外吸収分光法による励起電子の数の定量分析を組み合わせ、Srの置換サイトと電子-正孔再結合速度の関係を見つけました。活性変化を構造変化に繋げることにより、今後さらなる高活性光触媒の戦略的なデザインに貢献できれば、と期待しています。

図1 固相法(SSM)と水熱法(HTM)によるSrドープNaTaO3の電子-正孔再結合速度

図1 固相法(SSM)と水熱法(HTM)によるSrドープNaTaO3の電子-正孔再結合速度

 

Q2. 本研究テーマについて、工夫したところ、思い入れがあるところを教えてください

ラマン分光法でSrのBサイト置換を分析できたのは偶然でした

そもそもSrはNaTaO3のAサイトに入ると思ったのが主流の考え方でした。しかし、図2に示したように、Srを1.8 mol%ドープしたNaTaO3のラマンスペクトルから見られる860 cm-1のピークは確認の上Bサイトに入るSrによって対称性が崩れて現れたTaO6八面対の伸縮振動でした。Naと原子半径が変わらないSrが自分の半径の半分しか持たないTaの方を置換できたというのは全く理解できなかったのですが、その反面面白いとも思いました。「本当にBサイトに入るかな」と考えながら様々な合成を行ったのが今回の研究の始まりでした。

後で考えてみると100回も合成を行ったと覚えていますが、当時は毎日興奮状態だったので全然疲れを感じなかったですし、逆に体重も5kg増えました。

2015-09-24_10-34-11

図2 ラマンスペクトル: Bサイト置換信号

 

Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?

このテーマの難しかったところはラマン分光法で確認した860 cm-1バンドが本当にBサイトに入るSrによるものなのかを証明することでした。

ラマン分光法でNaTaO3光触媒のドーパントの置換サイトを確認すると研究は今までなかったのでデータベースが少なかったのです。それで、NaTaO3のAサイトにしか入らないと思われるK(K+は+1の電荷を持つため、Bサイトに入ると電荷バランスが崩れる)とBサイトに入れると思われるCa、BaとLa(それぞれ+2と+3の電荷を持ち、AとBサイトに同時に置換すると電荷バランスが保たれる)などを別々にドーピングし、前者には860 cm-1バンドがないのに対し後者はあるという結果を確認しました。

それに加えて、大きいSrが小さいTaを置換すると単位格子が膨張するという考えに基づいてXRDでその膨張を確認しました。

 

Q4. 将来は化学とどう関わっていきたいですか?

非常に興味を持っているエネルギー分野に化学の知識を用いて貢献したいです。効率のクリーンエネルギーが発達すれば、テクノロジー発展が更に加速されると思います。夢みたいな未来を早く見たいという憧れを持ち、皆のためももちろんのことですが、私の個人的なメリットも考慮しつつ、自分がもつ全ての脳細胞を励起状態まで上げて、クリーンエネルギー分野を促進したいです。

 

Q5. 最後に、読者の皆さんにメッセージをお願いします。

「問題解決を楽しむ」ことです。大げさな言い方かもしれませんが、人類の発展は当時に抱えている問題を解決する事で実現されたと個人的に思います。私は、現在皆が抱えている問題を解決できたらいいなという考え方から、エネルギー分野に関わる光触媒研究に興味を持つ事になりました。

もちろん、興味を持てばどんな事でも想像以上の力を発揮できると思いますが、ある事に興味を持つために必要なものは「問題を発見し、それを解決したい」という気持ちだと思います。「なぜ皆この問題を解決しないのかな?」と楽しみながら、私たちがやってしまいましょう!

 

関連リンク

 

研究者の略歴

2015-09-25_02-41-18安 龍杰

所属:神戸大学大学院理学研究科 大西研究室 博士課程1年

テーマ:光触媒を活性化するメカニズムの解明研究

略歴:1988年中国・吉林省生まれ。2011年中国蘭州大学理学部卒業後、2012年4月神戸大学理学研究科に研究生として留学、2012年10月修士課程に入学(2014年修士学位取得)、2014年10月博士課程に進学。2013年表面科学学術講演会講演奨励賞(スチューデント部門)、2014年CSJ化学フェスタ2014優秀ポスター発表賞。

 

webmaster

webmaster

投稿者の記事一覧

Chem-Station代表。早稲田大学理工学術院教授。専門は有機化学。主に有機合成化学。分子レベルでモノを自由自在につくる、最小の構造物設計の匠となるため分子設計化学を確立したいと考えている。趣味は旅行(日本は全県制覇、海外はまだ20カ国ほど)、ドライブ、そしてすべての化学情報をインターネットで発信できるポータルサイトを作ること。

関連記事

  1. 原油生産の切り札!? 国内原油生産の今昔物語
  2. アンモニアの安全性あれこれ
  3. 植物の受精効率を高める糖鎖「アモール」の発見
  4. ノーベル化学賞を受けた企業人たち
  5. ヒスチジン近傍選択的なタンパク質主鎖修飾法
  6. クリスマス化学史 元素記号Hの発見
  7. 含『鉛』芳香族化合物ジリチオプルンボールの合成に成功!②
  8. ルテニウム触媒を用いたcis選択的開環メタセシス重合

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 第7回 慶應有機化学若手シンポジウム
  2. 合成化学者十訓
  3. ククルビットウリル Cucurbituril
  4. 第94回日本化学会付設展示会ケムステキャンペーン!Part III
  5. イソプロポキシボロン酸ピナコール:Isopropoxyboronic Acid Pinacol Ester
  6. リピトールの特許が切れました
  7. 出張増の強い味方!「エクスプレス予約」
  8. 酸素 Oxygen -空気や水を構成する身近な元素
  9. 秋の褒章2014ー化学分野からは準結晶研究の蔡安邦教授に
  10. 研究室クラウド設立のススメ(導入編)

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

電気化学ことはじめ(1) 何が必要なの??

化学の中で酸化還元反応というのは非常によく出てくるトピックであり、高校でも水の電気分解から電気化学系…

【書籍】電気化学インピーダンス 数式と計算で理解する基礎理論

(↓kindle版)概要インピーダンス測定の結果をいかに解釈すべきか.その理…

国際化学オリンピック、日本の高校生4名「銀」獲得

文部科学省は2020年7月31日、オンラインで開催された「第52回国際化学オリンピック」に参加した高…

有機合成化学協会誌2020年8月号:E2212製法・ヘリセン・炭素架橋オリゴフェニレンビニレン・ジケトホスファニル・水素結合性分子集合体

有機合成化学協会が発行する有機合成化学協会誌、2020年8月号がオンライン公開されました。今回は担当…

第八回ケムステVシンポジウム「有機無機ハイブリッド」を開催します!

夏真っ盛りですね。某ウイルスのもろもろに目を奪われがちですが、この季節は熱中症にも気をつけましょう。…

巧みに設計されたホウ素化合物と可視光からアルキルラジカルを発生させる

第268回のスポットライトリサーチは、金沢大学医薬保健研究域薬学系(大宮研究室)の佐藤 由季也(さと…

第111回―「予防・診断に有効なナノバイオセンサーと太陽電池の開発」Ted Sargent教授

第111回の海外化学者インタビューは、Ted Sargent教授です。トロント大学電気・計算機工学科…

アレノフィルを用いるアレーンオキシドとオキセピンの合成

脱芳香族化を伴う直接的な酸化により芳香族化合物からアレーンオキシドとオキセピンを合成する手法が開発さ…

Chem-Station Twitter

PAGE TOP