[スポンサーリンク]

B

ブンテ塩~無臭の含硫黄ビルディングブロック~

[スポンサーリンク]

ブンテ塩はR-S2O3の構造を持つ有機硫黄化合物(塩)の総称で、カテネーションを起こしたS-S結合を有しています。この特性を活かした有機硫黄化学の重要な合成中間体として、また、ラジカル重合開始剤や感光性染料、さらにはパーマの毛髪処理剤として注目されています。以下では代表的な合成法、反応と最近の研究、応用例をご紹介します。

ブンテ塩の構造

製法

・ハロゲン化アルキルとチオ硫酸塩のSN2反応[1]

合成例

1-ブロモブタンからの合成 [2]

・スルフェン酸クロリドと亜硫酸塩[3]

スルフェン酸クロリドからの合成

ハロゲン化アルキルと亜硫酸塩のSN2反応では調製不能な芳香族ブンテ塩も合成できることが特徴です。

反応

・S原子上での求核置換

Na[O3S2R] + NaSR’ → RSSR’ + Na2SO3

ブンテ塩とチオラートとの反応[1]

→チオラートを作用させることにより、合成法の限られる非対称ジスルフィドを簡便に調製可能です。

ほかの求核剤とも反応します。たとえばシアン化物イオンCNと反応してチオシアン酸エステルを与えます[4]。

ブンテ塩の合成とシアン化合物イオンとの反応

・加水分解

加水分解

酸触媒下での加水分解によって対応するチオールへ変換されます。

・酸化

過酸化水素による酸化 [2]

ヨウ素や過酸化水素などの穏和な酸化剤によりジスルフィドを与えます。

より強力な硝酸ではスルホン酸、塩素ではスルホン酸クロリドまで酸化されます。

・チオアセタール化[5]

アルデヒドとの反応

ブンテ塩は無臭のチオール等価体としてふるまい、穏和な条件でアルデヒドのチオアセタール化に用いることができます。

最近の進展

・ヨウ素触媒下でインドール誘導体の3-位にスルフィドを導入できます[6]。

(画像:[6])

・悪臭のないチオール等価体として、エノンへのマイケル付加に利用された[7]ほか、アルケンへの付加[8]も報告されています。

(画像:[7])

(画像:[8])

・同じく臭気のないチオール等価体という特性を活かし、モノフルオロメチル化剤として利用されました[9]。

(画像:[9])


応用

・ラジカル重合開始剤

ある種のブンテ塩は光によってS-S結合がホモリティックに解列するため、ラジカル重合開始剤としての利用が検討されました[10]。

ブンテ塩の光分解(画像:[10])

・染料

感光性染料としての利用が検討されました[11]。

・パーマ

パーマ(縮毛矯正)に用いる毛髪処理剤には、従来人体に有害なホルムアルデヒドとグリオキシル酸が用いられてきましたが、近年ブンテ塩を利用する手法が開発されています[12]。

 

参考文献

*総説 Current Organocatalysis, 2018, 5, 182-195. DOI : 10.2174/2213337206666181122101209

  1. Org. Synth. 58: 147. doi:10.15227/orgsyn.058.0147
  2. J. Am. Chem. Soc.”. 64, s. 149-150, 1942. DOI10.1021/ja01253a040
  3. J. Org. Chem.”. 20, s. 475-487, 1955. DOI10.1021/jo01122a010
  4. Siegfried HauptmannOrganische Chemie, 2. durchgesehene Auflage, VEB Deutscher Verlag für Grundstoffindustrie, Leipzig, 1985, S. 470, ISBN 3-342-00280-8.
  5. J. Am. Chem. Soc.”. 63, s. 658-659, 1941. DOI10.1021/ja01848a007
  6. J. Org. Chem. 2016, 81, 10, 4262–4268. https://doi.org/10.1021/acs.joc.6b00636
  7. RSC Adv., 2015, 5, 27107-27111. https://doi.org/10.1039/C5RA01381J
  8. Synlett 2017, 28,A-F. DOI: 10.1055/s-0036-1588144
  9. Org. Lett. 2018, 20, 19, 6270–6273. https://pubs.acs.org/doi/abs/10.1021/acs.orglett.8b02753
  10. 工業化学雑誌, 1970, 73 巻, 4 号, p. 805-811. https://doi.org/10.1246/nikkashi1898.73.4_805
  11. Bulletin of the Chemical Society of Japan 1973, Vol.46, No.5, 1509-1511. https://doi.org/10.1246/bcsj.46.1509
  12. 特表2020-515568

関連書籍

[amazonjs asin=”4759814167″ locale=”JP” title=”現代有機硫黄化学: 基礎から応用まで (DOJIN ACADEMIC SERIES)”] [amazonjs asin=”4759800913″ locale=”JP” title=”有機硫黄化学 (合成反応編)”]
gaming voltammetry

berg

投稿者の記事一覧

化学メーカー勤務。学生時代は有機をかじってました⌬
電気化学、表面処理、エレクトロニクスなど、勉強しながら執筆していく予定です

関連記事

  1. ウィッティヒ反応 Wittig Reaction
  2. アシル系保護基 Acyl Protective Group
  3. 求核置換反応 Nucleophilic Substitution…
  4. バートン反応 Barton Reaction
  5. カルボン酸の保護 Protection of Carboxyli…
  6. ベンジジン転位 Benzidine Rearrangement
  7. 1,2-/1,3-ジオールの保護 Protection of 1…
  8. パール・クノール フラン合成 Paal-Knorr Furan …

注目情報

ピックアップ記事

  1. 化学者のためのエレクトロニクス入門③ ~半導体業界で活躍する化学メーカー編~
  2. トリフェニル-2,6-キシリルビスムトニウムテトラフルオロボラート:Triphenyl-2,6-xylylbismuthonium Tetrafluoroborate
  3. “へぇー、こんなシンプルにできるんだっ!?”四級アンモニウム塩を触媒とするアルキンのヒドロシリル化反応
  4. 留学せずに英語をマスターできるかやってみた(1年目)
  5. 国際シンポジウム;創薬・天然物―有機合成化学の展望―
  6. エピスルフィド合成 Episulfide Synthesis
  7. Dead Ends And Detours: Direct Ways To Successful Total Synthesis
  8. 田辺三菱 国内5番目のDPP-4阻害薬承認見通し
  9. 黒板に描くと着色する「魔法の」チョークを自作してみました
  10. ハロルド・クロトー Harold Walter Kroto

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2021年3月
1234567
891011121314
15161718192021
22232425262728
293031  

注目情報

最新記事

有機合成化学協会誌2025年11月号:英文特集号

有機合成化学協会が発行する有機合成化学協会誌、2025年11月号がオンラインで公開されています。…

【11月開催】 【第二期 マツモトファインケミカル技術セミナー開催】 題目:アクリル含浸樹脂 ビステックスシリーズのご紹介

■セミナー概要当社ではチタン、ジルコニウム、アルミニウム、ケイ素等の有機金属化合物の“オルガチッ…

【日産化学 27卒/Zoomウェビナー配信!】START your ChemiSTORY あなたの化学をさがす 研究職限定 キャリアマッチングLIVE

3日間で12領域の研究職社員がプレゼンテーション!日産化学の全研究領域を公開する、研…

hERG阻害 –致死性副作用をもたらす創薬の大敵–

創薬の臨床試験段階において、予期せぬ有害事象 (または副作用) の発生は、数十億円以…

久保田 浩司 Koji Kubota

久保田 浩司(Koji Kubota, 1989年4月2日-)は、日本の有機合成化学者である。北海道…

ACS Publications主催 創薬企業フォーラム開催のお知らせ Frontiers of Drug Discovery in Japan: ACS Industrial Forum 2025

日時2025年12月5日(金)13:00~17:45会場大阪大学産業科学研究所 管理棟 …

【太陽ホールディングス】新卒採用情報(2027卒)

■■求める人物像■■「大きな志と好奇心を持ちまだ見ぬ価値造像のために前進できる人…

欧米化学メーカーのR&D戦略について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、欧米化…

有馬温泉でラドン泉の放射線量を計算してみた【化学者が行く温泉巡りの旅】

有馬温泉は、日本の温泉で最も高い塩分濃度を持ち黄褐色を呈する金泉と二酸化炭素と放射性のラドンを含んだ…

アミンホウ素を「くっつける」・「つかう」 ~ポリフルオロアレーンの光触媒的C–Fホウ素化反応と鈴木・宮浦カップリングの開発~

第684回のスポットライトリサーチは、名古屋工業大学大学院工学研究科(中村研究室)安川直樹 助教と修…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP